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Abstract 
 

Zinc oxide nanoparticles (ZnO Nps)and silver doped zinc oxide nanoparticles (Ag-ZnO Nps)  

were prepared  using nitrates of zinc and silver as oxidizers and succinic acid as a fuel through 

solution combustion synthesis (SCS) at 400 0C. The synthesized materials were characterized by 

various analytical techniques such as XRD,FTIR, Raman UV-Vis, PL, SEM, EDX and TEM. 

The synthesizednanomaterials were tested for the photocatalytic degradation of methylene blue 

and the result reveal that Ag-ZnO Nps shows the better photocatalytic activitycompared to 

undoped ZnO Nps. Biodiesel production fromsimarouba oil shows that Ag-ZnO Nps acts as 

good catalyst compare to ZnO Nps, we have also developed sensor which showed a linearity in 

the concentration range50-350 nM and limit of detection was found to be 3.5 and 3.8 nM (3σ) 

for lead and cadmium respectively. Further we have examined the antibacterial activity against E 

.coli, and S. aureus bacteria.  

Keywords: A. semiconductors; B. luminescence; C. X-ray diffraction; D. catalytic property. 
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1.  Introduction 

Nanotechnology tailoring the composition, size and shape of materials in nanometer scale 

to attain distinctive properties, which can be efficiently manipulated for the required 

applications[1]. In the current scenario, synthesizing different kinds of hybrid metal oxide 

nanomaterials attracts young researcher because of its novel application in almost all the  

fields[2, 3]. Among transition metal oxide, ZnO nanomaterialsfinds uses in a number of fields, 

such as ceramics, piezoelectric transducers, chemical sensors, anti-UV additives, photocatalysts, 

photoelectric fields etc. In addition to ZnO photocatalyst, (BiO)2CO3 and Graphitic carbon 

nitride based nanocomposites also acts as good photocatalysts [4-6]. ZnO Nps also  shows very 

good antibacterial activity [7] and as a catalyst for biodiesel production[8]. Pure ZnO shows n-

type conductivity, but doping changes to p-type conductivity and modifies the optical and 

electronic properties of the ZnO, which in turn influence the photocatalytic activity and other 

related applications[9-11].Lot of research groups used doped and undoped ZnO Nps as photo 

catalyst for the degradation of organic dye. It was found that undoped ZnO shows lower 

photocatalytic activity than doped ZnO Nps. This is because electron–hole pair recombination is 

higher in undopedbut lower in case of doped ZnO Nps[12]. In order to increase the 

photocatalytic activity and other applications of ZnO, noble metal incorporation to the ZnO have 

been carried out by various researchers [13, 14]. They synthesized noble metal doped ZnO using 

various method and observed improved performance compared to undoped ZnO Nps. They have 

suggested that both ZnO and Ag-ZnO are nontoxic in nature and finds various biological and 

photocatalytic applications[15]. Various methods have been used for the synthesis of  ZnO Nps, 

few of them are co-precipitation method[16], hydrothermal method[17],sol-gel method[18], 

sonochemical method [19],electrodeposition[20], solid state reaction method [21], solution 
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combustion method[22], etc.. Among them solution combustion method is simple, rapid, energy 

saving and easy to scale up. It does not require any special instruments and gives pure crystalline 

product [23]. The obtained material is examined for the photocatalytic activity of methylene blue 

dye major component present in paper industry. The existence of dyes in water has become a 

serious issue because of its carcinogenic nature, i.e., it creates several environmental problems 

on the health of mankind and also to the aquatic creatures. So remediation of adverse effects of 

dyes in water is a very important issue today. Various techniques are available for the removal of 

dyes present in the wastewater. Amongst photocatalytic degradation of dyes using UV/sunlight is 

one of the most prominent technique because photocatalytic researchers show more inclination to 

carry out the reaction under ambient conditions with simple and low cost. [24]. Photocatalysis 

occurs on the surface of semiconductor and its efficiency is strongly influenced by morphology 

and surface modification of the oxide. Band gap containing semiconductor creates electron-hole 

pairs, electrons were generated in the conduction band and holes were generated in the valence 

band [25].Some of these charge carriers spread to the crystal surface and react with the adsorbed 

water molecules, hydroxide ions and oxygen molecules to generate reactive oxygen species, 

which are responsible for photo catalysis. We have also detected heavy metal ions such as lead 

and cadmium which are toxic in nature. The presence of these metals in the environment cause 

neurological, cardiovascular, reproductive disorders, kidney damage and other disorders on 

human health. Hence, measurement of these metal ions at trace concentration level is required. 

Several methods are available to detect these metal ions at trace level concentration. But, 

compare to other methods, electrochemical detection is more feasible[26]. 

In this paper we have synthesized ZnO and Ag-ZnO Nps through a simple combustion 

method, using nitrates of Zn and Ag as an oxidizers and succinic acid used as a fuel. Succinic 
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acid is nontoxic, low cost, and rich in carbon, hydrogen and oxygen. The characterized 

nanoparticles were used as a catalyst for the degradation ofmethylene blue (MB), 

electrochemical sensor for the detection of lead and cadmium, as a catalyst for biodiesel 

production and also used to examine the antibacterial activity. 

2.  Experimental  

2.1. Preparationof ZnO and Ag-ZnO Nps 

 In order to prepare of ZnO and Ag-ZnO Nps by combustion method, zinc nitrate and 

silver nitrate were used as oxidizer and succinic acid as a fuel. Stochiometric ratios of 1:1 zinc 

nitrates and succinic acid are taken in petridish containing 15 mL H2O. The solution is stirred to 

get homogeneous solution. These mixtures is introduced into preheated muffle furnace 

maintained at 400 oC,smolderingtype of combustion reaction taken place and within 5 min, 

nanocrystalline ZnO is formed. The product is calcined at 500
o
C for 3 hour. Similar procedure 

was carried out for preparation of Ag-ZnO Nps by taking 5 mol % of AgNO3. 

2.2. Characterization 

X-ray diffraction (XRD) data were recorded in Philips X'pert PRO X-ray diffractometer 

with graphite monochromatized Cu-Kα (1.542 Å) radiation.The Fourier transform infrared 

spectra (FTIR) of the samples were collected using Bruker Alpha-p spectrometer.Raman spectra 

were recorded 514.5 nm Ar+ laser in HORIBA LabRam HR800 spectrometer.The absorption 

spectraof the samples were measured on a Perkin Elmer Lambda-750 UV–vis 

spectrometer.Photoluminescence (PL) spectra were examined by Agilent Cary Eclipse 

Fluorescence spectrometer using Xe lamp with an excitation wavelength of 397 nm.The surface 

morphology was observed using Carl Zeiss ultra 55 scanning electron microscope 
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(SEM).Transmission electron microscopy (TEM) was performed JEOL JEM 1200 Ex operating 

at 100 Kv and attached with EDX. 

2.3. Photocatalytic degradation of dye 

The photocatalytic activity studies of synthesized ZnO and Ag-ZnO Npswere evaluated 

bythe degradation of Methylene blue (MB) aqueous solution at room temperature using a 120 W 

mercury lamp as radiance source. In a typical procedure, 50, 100, 150 and 200 mg of 

photocatalyst was added to 100 mL of different concentration ofMB aqueous solutions (5, 10, 15 

and 20 ppm) in a 150 x 75 mm sized batch reactor and the distance between the light source and 

the sample was maintained at 18 cm. The solution wasconstantly stirred in the dark for 30 

minutes to ensure the organization of an adsorption-desorption equilibrium between the MB and 

photocatalyst previous to irradiation. 2 mL of thesuspension was withdrawn from the solution 

mixture at a sequence of 30 minutes time intervals. The dispersed ZnO/Ag-ZnO photocatalyst 

was removed using spinwin microcentrifuge.The rate of degradation of MB dye was monitored 

by measuring absorbance using UV-vis spectrophotometer at 663 nm wavelength. The 

percentage of degradation can be calculated using the formula. 

% of degradation = Ci - Cf x 100...................... (i) 
Ci 
 
Where Ci and Cf are the initial and final concentration of the dye. 
 
 

 

2.4. Procedure for the modification of electrode and electrochemical study: 

 

2.4.1. Experimental 

All electrochemical measurements were carried out using electrochemical work station 

[CH Instruments, Texas, USA, model: CHI 619B] at room temperature(25 ± 2ºC) in an 
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electrochemical cell of volume 10 mL with a standard three electrode configuration where 

modified glassy carbon electrode acts as working electrode, a platinum wire as auxiliary 

electrode and Ag/AgCl acted as the reference electrode. All the solutions were degassed using 

high purity nitrogen gas for 7-8 min. before all electrochemical measurements. pH measurements 

were carried out using pH meter (Control Dynamics, Mumbai, India model: APX 175).An 

ultrasonic bath was used for the sonication. 

2.4.2. Surface modification 

10 mg of Ag-ZnO was dispersed in 5 mL distilled water by ultrasonication for about 15 

min to give a uniform suspension. Prior to modification, the glassy carbon electrode (GCE) was 

mechanically polished with alumina slurry of different grades to mirror finish then rinsed and 

sonicated for about 1 min in distilled water followed by ethanol. Subsequently, the dispersed 

suspension (5 µL) was drop coated onto the surface of the glassy carbon electrode and allowed to 

evaporate at room temperature. The ZnO modified GCE was prepared by the same procedure. 

2.4.3. Analytical procedure 

Electrochemical measurements of Pb2+ and Cd2+ was carried out using DPASV in the 

potential range -1.0 to 0.0 V with an amplitude of 0.01 V and pulse width of 0.05 s. Known 

amounts of analytes were taken in an electrochemical cell of 10 mL- volume capacity. The Ag-

ZnO modified electrode was immersed into the cell containing 0.1 M KCl, buffer solution (pH 5) 

and target metal ions which was stirred for 2 min to preconcentrate the metal ions at open circuit 

potential.Then, the preconcentrated metal ions were reduced at a reduction potential of -1.2 V 

and subsequently stripped off from the electrode surface into the bulk of the electrolytic solution 

by sweeping the potential in the positive direction after 20 s of equilibration time. 
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2.5. Antibacterial activity 

The prepared ZnO and Ag-ZnO Nps were tested for their antibacterial activity by 

following Kirby-Bauer disk diffusion method[27, 28]against one  Gram-negative bacteria 

Escherichia coli (MTCC45) and one Gram-positive  bacteria Staphylococcus aureus 

(MTCC3160). The inoculum was prepared by transferring a loop full of culture from the stock to 

tubes containing Mueller-Hinton broth (MHB) at 37°C on a rotary shaker at 200 rpm until 

absorbance reached around 0.4 to 0.6 at 600 nm to ensure that cells are in exponential phase. 

Muller Hilton agar media was prepared and poured into sterile Petri plates and allowed it to 

solidify. The above sub cultured broth of respective organisms was swabbed on the solidified 

MH agar plates and allowed to dry for about 10 min. The wells were punched on the plates using 

cork borer of diameter 6mm. 200mg of sample was dissolved with 1 ml of deionized water and it 

is placed in an ultrasonicator for 30 min to break intermolecular interactions. Now ZnO and Ag-

ZnO Nps were finally containing disaggregated particles and used as standard concentration. 

From same, different volumes like 50µl and 100µl, of samples added to each wells. Standard 

antibiotic streptomycin is taken with volume of 50µl (5mg/ml of final concentration) as positive 

control and 50 µl of water as negative control. Then the plates were incubated at 37°C for 18-24 

hrs. For development of inhibition zones. After incubation time the zones of inhibition were 

observed and diameters of the zones were measured and tabulated. All plates are done in 

triplicates. 

2.6. Biodiesel synthesis 

The transesterification reaction was carried out in a 1 liter three neck flask equipped with 

a reflex condenser, thermostat, mechanical stirrer, sampling outlet and mechanical stirrer set at 

650 rpm. 500 mL of simarouba oil was added to the flask and preheated the oil before the 
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reaction started. 1.5% w/v ZnO is added to the methanol (9:1 methanol to oil molar ratio) and the 

resultant mixture was added to the preheated oil and reaction mixture was maintained at 64 oC by 

digital thermometer and reaction was carried out for a period of 2 hours. After completion of the 

reaction, the reaction mixture was transferred to separating funnel and allowed to settle for 

overnight. The catalyst, glycerin and biodiesel were separated, unreacted methanol was 

recovered from biodiesel and obtained biodiesel was filtered to remove any dissolved zinc oxide 

catalyst. Similar procedure was carried for Ag-ZnO Nps.  

3.  Results and discussion 

The XRD pattern of ZnO and Ag-ZnO Nps prepared by solution combustion method is 

depicted in Fig. 1.The XRD pattern of pure ZnO(Fig. 1a) shows diffraction peaks, that can be 

indexed to the hexagonal wurtzite structure with lattice parameters a=b=3.2498 Å and c=5.2066 

Å, Theobtained data arein good agreement with the JCPDS no. 36-1451.The XRD pattern of Ag-

ZnONps(Fig. 1b)shows the additional peaks compared to bare ZnO Nps at 2θ values 38.2, 44.2 

and 64.3 corresponds tocubic phase silver (JCPDS no. 2-109) [29].The average crystallite size 

calculated using Debye-Scherrer equation was found to be 19 and 37 nm for ZnO and          Ag-

ZnO Nps respectively. 

 

 

D is the crystallite size,λ is the wavelength of the X-ray source,β is the full width at half 

maximum,θ is the Braggs diffracting angle. 

The FTIR spectrum of ZnO and Ag-ZnO Nps was recorded in the range 350-4000 cm−1, 

and it is given in Fig. 2. From the FTIR spectrum, various functional groups and metal-oxide 

bond present in the compound were analyzed. In the FTIR spectrum, a significant vibration band 

ranging from 400cm−1to 500 cm−1 is assigned to the characteristic stretching mode of Zn-O bond. 

)(...............................
cos

89.0
iiD

θβ
λ=
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In the case of Ag-ZnO Nps the intensity of peak is reduced due to the formation of Ag 

nanoparticles on the surface of ZnO Nps [30] . A broad peak at 3434 cm-1 (stretching) and 

1330cm-1to 1670 cm-1 (bending) indicates the presence of hydroxyl residue which is due to 

atmospheric moisture [31,32].  

To investigate the influence of Ag on the molecular vibrational modes of ZnO Nps, room 

temperature Raman spectra of ZnO and Ag-ZnO Nps were recorded in the spectral range of 200 

to 1000 cm-1, as shown in figure S1. The Raman spectrum of undoped ZnO Nps (figure S1a) 

consist of peaks that were observed at 331 cm-1 (second-order vibration), 438, 517 and  580 cm-1, 

corresponding to the E2H-E2L, E2H,  E1(TO)+ E2L, E1 (LO), fundamental phonon modes of 

hexagonal ZnO, respectively. The 331 cm-1 mode could be observed by enhancement of Raman 

active and inactive phonons, with lattice symmetry due to disorder-activated Raman scattering. 

The E2 mode at 438 cm-1 mode corresponds to wurtzite structured ZnO, and a very sharp feature. 

The vibration at 537 cm–1 can be attributed to either a local vibration mode related to the donor 

defects or oxygen vacancies and Zn interstitials. The 580 cm-1 E1 (LO) corresponds to well 

resolve Raman peaks due to multiphonon and resonance processes, and are related to oxygen 

deficiency. Ag-ZnO composite related vibrational modes were identified at 346 and 508 cm-1. 

Decrease in intensity of Raman spectrum of Ag-ZnO Nps (figure S1b) is due to the incorporation 

of Ag into ZnO Nps. The incorporation of defects/impurity may breakdown of translational 

crystal symmetry [33, 34] 

 UV-Vis spectra were recorded from 200 to 800nm range and is as shown in Fig. 

S2.Ag-ZnO Nps (Fig.S2 (b).) shows an intense peak at 388 nm indicated to band gap of 

3.19 eV and pure ZnO(Fig.S2 (a).) shows an intense peak at 377 nm corresponds to a 

band gap of 3.29 eV.The red shift in the UV-Vis spectrum of Ag-ZnO Nps compare to 
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pure ZnO nanoparticles clearly shows the reduction in the band gap [35]. Due to the 

lesser band gap of Ag-ZnO Nps, it shows higher photocatalytic activity for degradation of 

dye compared to the undoped ZnO Nps. 

Photoluminescence study is one of the beneficial technique to find the efficiency of 

charge carrier separation in the semiconductor[36].Fig. 3 shows the PL emission spectrum of 

ZnO and Ag-ZnO Nps were recorded at the room temperature with an excitation wavelength of 

397 nm. The pure ZnO Nps gives a strong UV emission peak at 542 nm and weak emission peak 

at 485 nm. In case of Ag-ZnO Nps, the obtained PL emission intensity decreased and these 

results are in good agreement with the Stern-Volmer quenching. This indicates higher charge 

carrier separation efficiency in the case of Ag-ZnO Nps. The obtained emission peaks are in the 

visible region could be ascribed to bound excitons and defect states positioned at surface of 

nanostructured pure and doped ZnO Nps respectively. The inset of (Fig. 3.) gives PL excitation 

spectrum with emission at 542 nm [37]. The chromaticity co-ordinates is used to find out the 

luminous color of material. It can be estimated using Commission International De I’Eclairage 

(CIE) system. Fig. S3. shows the CIE chromaticity diagram of ZnO and Ag-ZnO Nps  and 

clearly shows that both the materials emits blue light region 

Fig. S4 shows the SEM images of ZnO and Ag-ZnO Nps. It clearly shows that they are 

agglomerated and almost spherical in shape. In case of Ag-ZnO Nps (Fiig. S4, e,d)  the presence 

of bright Ag particles on the surface of ZnO. TEM images (Fig. 4) showed almost spherical 

shape. The average size of the ZnO and Ag-ZnO Nps were found to be 24 nm and 42 nm 

respectively. The HRTEM image of Ag-ZnO NPs as shown in Fig. 4f reveals that interplanar 

spacing of 0.27 nm corresponds to growing directions of ZnO along (101) and 0.21 nm 
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corresponds to the Ag along (200) direction. EDS analysis. (Fig. S5) clearly shows the presence 

of Ag atoms in addition to Zn and O in Ag-ZnO Nps. 

Fig. 5 (a1&a2)shows the effect of catalytic load of ZnO and Ag-ZnO Nps on the 

photocatalytic degradation efficiency of methylene blue dye of 10ppm atpH-7. The result shows 

that, as the catalyst dosage increases, efficiency of degradation also increases in both the cases. 

This is due to the fact that, as the catalytic weight increases, number of active sites on surface of 

catalyst also increases which in turn increases the number of holes and hydroxyl radicals, 

resulting in rapid degradation. Further increasing of catalytic load, sedimentation and 

agglomeration of the particles takes place and turbidity of slurry increases and thereby decreases 

the light penetration, which automatically decreasing the number of holes and hydroxyl radicals. 

The effect of pH on the photocatalytic degradation of methylene blue dye was shown 

inFig. 5 (b1& b2). Degradation process mainly depends on the pHof the solution [38].Variation 

of pH changes the surface properties of both ZnO and Ag-ZnO Nps, which alters the degradation 

efficiency. The highestphotocatalytic degradation efficiency was observed in basic medium 

compare to acidic medium.At higher pH more number of hydroxyl radicals are formed which 

increases the degradation efficiency in both the cases at pH-9. The obtained result was good 

agreement with the reported studies [39, 40]. 

Fig. 5 (c1&c2)shows the effect of dye concentration (5-20 ppm)on the photocatalytic 

degradation of methylene blue by keeping catalytic load of 100 mg and atpH 7. The obtained 

results shows that, as the concentration of dye solution increases, degradation efficiency 

decreases. This is due to more number of dye molecules were adsorbed on the surface of catalyst, 

leads to decrease in active sites of catalyst.It clearly shows that maximumdegradation efficiency 

is at 5 ppm dye solution.  
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Fig.S6 (a&b)shows the comparison study of photocatalytic activity of ZnO and Ag-ZnO 

Nps under both UV and sunlight exposure. By taking constantmethylene blue dye concentration 

of 10 ppm,catalytic load of 100mg and pH 7, the highest degradation efficiency was observed in 

Ag-ZnO Nps followed by ZnO Nps. This is due to efficient charge separation occurs in the case 

of Ag-ZnO Nps. Fig. S6 (c)shows the kinetic study on photocatalytic degradation of methylene 

blue dye using both pure and Ag-ZnO Nps. These are follows pseudo first order rate law for 

degradation of dye and rate constant was calculated using the equation. 

K= (2.303X slope) ………… (xiii) 

Rate constant was found to be 2.9x10-2 and 2.08x10-2 min-1 for ZnO and Ag-ZnO Nps 

respectively. 

It clearly shows that the rate of a reaction is more in the case of Ag-ZnO Nps compared to 

undoped  ZnO Nps.   

The mechanisms underlying the enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic 

nanostructures towards the degradation of MB can be understood as follows: The SPR of Ag 

nanoparticles helps in extending the light absorption of ZnO from near UV to the visible region, 

leading to an improved light utilization efficiency. In addition, decoration with Ag nanoparticles 

significantly improves the charge separation in ZnO. When ZnO absorbs photons of energy 

greater than or equal to its band gap, electrons are promoted from its valence band to conduction 

band, creating equal number of holes in the valence band. Since the energy level of conduction 

band of ZnO is higher than the Fermi level of Ag–ZnO hybrid structure, electrons flow from 

ZnO nanostructures to Ag nanoparticles. Hence Ag nanoparticles act as efficient sinks for the 

photogenerated electrons, preventing their recombination with holes. This process, known as the 

direct electron transfer from semiconductor to the plasmonic nanostructures, is dependent on the 
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alignment of electronic band structure of the noble metal and semiconductor. Furthermore, 

irradiation with light leads to the excitation of MB dye molecules adsorbed onto the ZnO 

nanostructures. The photoexcited MB molecules transfer electrons into the conduction band of 

ZnO. The photogenerated electrons created by the above mentioned processes react with 

dissolved O2 molecules forming superoxide anion radicals, while holes react with H2O leading to 

the formation of hydroxyl radicals, both of which cause the degradation of the MB dye [41, 42]. 

Mechanisms of formation of possible radicals are as shown in Eqs. (iii) – (xii) and scheme.1. 

 

 

 

 

 

 

 

 

 

 

 

O2 + e-
→ O2

-(iii) 

O2
-+H+ →HO2

.
(iv) 

HO2

.
 + HO2

.
→ H2O2 + O2                   (v) 

H2O2 + e
-
CB → HO

.
+ HO

-
(vi) 

H2O2 + O2
- → HO

.
+ HO

-
+ O2 (vii)  

H2O2→ 2HO
.
(viii) 

O2 + HO
-
 → O2

-
+ HO

.
(ix) 

Dye + HO
.
 → Degradation products             (x) 

Dye +h+
VB → oxidation products                (xi)                         

Dye + e-
CB → reduction products(xii) 
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Detection ofOH•formed during the photocatalytic degradation reaction using 

spectrofluorometer for Ag-ZnO Nps is shown in theFig. S6 (d). We used coumarin as probe 

molecule in the present study because when coumarin react with OH•changes the chemical 

structure to produce highly-fluorescent 7-hydroxyl coumarin. The experimental procedure for 

fluorescent probe method is by dispersing 200 mg Ag-ZnO in 50 mL of 1 mM coumarin 

solution. The above solution was stirred vigorously for 30 min before light irradiation.Every 10 

min, aliquots were taken out and the PL intensity was measured with excitation wavelength 

of320 nm. It clearly shows that  intensity increases linearly with irradiation time, which indicated 

the formation of OH• during photocatalytic degradation  at the surface of Ag-ZnO Nps [43]. 

 

Electrochemical behavior of ZnO and Ag-ZnO Nps: Simultaneous measurement of Pb2+ 

and Cd2+ ions. 

 Electro catalytic behavior of ZnO and Ag-ZnO Nps  modified glassy carbon electrode has 

been examined using electrochemical techniques such as cyclic voltammetry (CV) and 

differential pulse anodic stripping voltammetry (DPASV). Fig.6 (a) depicts the CVs of Pb2+ and 

Cd2+ions at modified and unmodified (bare) electrodes Furthermore no peak current signals were 

obtained for bare glassy carbon electrode (BGCE) in absence of metal ions, whereas at modified 

glassy carbon electrodes a significant anodic and cathodic signals were obtained in presence of 

10mM of Pb2+ and Cd2+ions in a acetate buffer solution of pH 5 with a scan rate of 50mV/s. 

However the modified glassy carbon electrode has not shown any current signals for the 

oxidation of zinc into zinc ions. Hence this could be used as an electrochemical interface for the 

measurement of Pb2+ and Cd2+ions. However CVs were recorded in the potential window from -

1.40 to 0.10 V and in presence of 10 mM of metal ions at ZnO (Fig. 6 a,b)and Ag doped ZnO 

(Fig. 6 a, c) modified electrodes to distinguish the electro catalytic activity of the electrodes. The 
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CVs were recorded at bare BGCE (Fig. 6 a, a) in presence of 10 mM of metal ions and it has 

showed a tiny peak current at a peak potential  of -0.78V which might be due the reduction of 

extraneous ions which were present in  10 mL capacity of the electrochemical cell, whereas the 

ZnO modified GCE in same composition has showed a significant peak current at a peak 

potential of  0.45 and -0.78V which is due the oxidation of Pb2+ and Cd2+ ions and the reduction 

peak potentials were observed at -0.44 and -0.81V respectively. Furthermore the Ag-ZnO 

modified GCE has been examined in the same domain and the anodic peak current signals were 

significantly enhanced for Pb2+ and for Cd2+ a small peak current has obtained. From this it can 

be concluded that the use of Ag-ZnO nanoparticle modified electrode can be used for the 

quantification of Pb2+ and Cd2+ ions.  

 In order to achieve the maximum efficiency of the Ag-ZnO modified electrode in the 

electrochemical quantification of metal ions DPASV were used. Fig. 6 (b).Shows the 

simultaneous detection Pb2+ and Cd2+ ions in presence of 50 – 300 nM in a pH 5 of acetate buffer 

solution at an applied potential of -1.20 V. In order to enhance the analytical signal the metal 

ions were measured separately and it has shown in Fig. 6 (c) and (d). 

To examine the analytical applicability of the developed interface for the quantification of metal 

ions from various industrial and environmental samples [44]. It is adequate to construct a 

calibration plot with the standard solutions of target analytes. Hence the calibration plot has been 

constructed and showed linearity in the range 50 – 350 nM using DPASV and it has been 

performed by the successive addition of 50 nM of analytes into a stirred solution of acetate 

buffer of pH 5 at an applied potential of -1.2 V of 10 mL capacity of electrochemical cell. The 

response of oxidation peak current of metal ions to the variation of concentration of metal ions 
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increases linearly with the increase of its concentration upto 350 nM and limit of detection was 

found to be 3.5 and 3.8 nM (3σ) respectively. 

Antimicrobial activity  

The qualitative antibacterial assay was carried out by employing standardkirby-bauer disc 

diffusion methodagainst E .coli, and S. aureus and the diameter of inhibition zones were 

tabulated in table 1.The maximum inhibition activity was found inStaphylococcus aureus. The 

next activity was found in E.coli. Literature studies showed that the ZnO Nps and Ag-ZnO Nps 

are effectively act against both gram negative bacteria and gram positive bacteria [45-47], but 

Compare to  ZnO, Ag-ZnO shows good inhibition. It shows synergic antibacterial activity found 

to be more prominent against Gram-positive bacteria than Gram-negative bacteria. The possible 

Inhibitory action is physical damage caused by interaction of the material with outer cell wall 

layer increased by increased concentration of Ag-ZnO Nps. It is found that more zone of 

inhibition was seen at a concentration of 500µg of Ag-ZnO Nps.Fig. 7shows antibacterial 

activity of ZnO and Ag-ZnO against E .coli, and S. aureus bacteria. 

Biodiesel Synthesis 

Biodiesel is well known as fatty acid methyl ester, an alternative fuel to diesel that has 

many benefits; nontoxic, renewable, environmental friendly and biodegradable [48].Currently, 

the homogeneous catalysts KOH/NaOH have been extensively used for the biodiesel production. 

But, these have several disadvantages, purification of biodiesel is difficult and requires large 

amount of water [49] and increase the operating and capital cost[50]. To overcome these 

problems, heterogeneous solid catalysts are favorable for biodiesel production and these catalysts 

are environmentally friendly. The main advantage of using heterogeneous catalyst is easy 

separation and purification of final products [51]. In the present study, simarouba oil was used 
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for synthesis of biodiesel using ZnO and Ag-ZnO Nps as catalysts. After transesterification 

process, the yield of biodiesels obtained  using ZnO and Ag-ZnO Nps as catalysts was found to 

be 80.1 and 84.5% respectively. The Ag-ZnO Nps shows higher catalytic activity which could be 

a potential catalyst for biodiesel production compared to ZnO Nps. In order to assess the quality 

of biodiesel, fuel properties kinematic viscosity, density, flash point, copper strip corrosion and 

acid value were evaluated and compare with ASTM standards as shown in the table 2. 

 

Fig. S7 shows the mechanism of heterogeneous acid catalyzed transesterification reaction [52]. 

The formation of more electrophilic species occurs in the first step of the reaction mechanism. In 

this case, rate-determining step depends on the acid catalyst strength. After formation of Lewis 

complex (stage1), in the 2nd stage alcohol nucleophilic bonding takes place, and new ester 

formed in the stage 3, the new ester desorbs from the Lewis site (stage 4) and the cycle is 

repeated.    

      Among the transition metal oxides, the ZrO2, ZnO, TiO2 have more concerned for biodiesel 

synthesis due to their acidic properties [53]. Among the transition metal oxides, zinc oxide was 

reported as  one of the best catalysts for trans-esterification due to its high activity and minimum 

weight loss in the reaction [54]. ZnO Nps have high catalytic activity and large surface area and 

this solid catalyst have more advantage to apply to a catalytic reaction in transesterification [55, 

56]. The biodiesel yield is more in Ag-ZnO Nps catalyzed trans-esterification reaction compare 

to ZnO Nps catalyzed reaction. In trans-esterification reaction, ZnO Nps was slightly loses the 

weight compare to Ag-ZnO NPs, this reduces the yield of biodiesel.  

Conclusion 

Wehavesuccessfullysynthesized ZnO and Ag-ZnO Nps by solutioncombustionmethod 

using succinic acid as a low cost novel fuel.XRDpattern clearlyshowsthe presenceofAgintheZnO 
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matrix. FTIR spectral studies revealed avibration band ranging from 400cm−1to 500 cm−1 is 

assigned to the characteristic stretching mode of Zn-O bond. In the case of Ag-ZnO Nps the 

intensity of peak is reduced due to formation of Ag Nps on the surface of ZnO Nps. UV–Vis 

absorptionspectrumof Ag-ZnO show red shift compare to ZnO Nps. PL spectrum of ZnO and 

Ag-ZnO Nps showed a strong UV emission at 542 nm. SEM images show thatthey 

areagglomerated and almost spherical in shape. EDSanalysis reveals the presence of Ag atoms in 

the Ag-ZnO Nps. TEM image shows that the average particle size of ZnO and Ag-ZnO Nps 

found to be24 and 42 nm respectively. Ag-ZnO Nps shows superior catalytic activities for the 

degradation of MB and biodiesel production compare to ZnO Nps. Ag-ZnO Nps also shows 

goodantibacterial activity. We have also succeeded for the detection of heavy metal ion Pb and 

Cd at nano level concentration. 
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Figure Caption  

Scheme 1:Schematic representation for degradation of Methylene blue by Ag-ZnO Nps under 
UV radiation. 

 

Table. 1 The antibacterial properties of (a) ZnO (b) Ag-ZnO Nps  

Table . 2. Fuel Properties of Simaroubabiodiesel using ZnO and Ag-ZnO  Nps. 

 

Fig. 1XRD pattern of (a) ZnO and (b) Ag-ZnO Nps 

Fig. 2 FTIR spectrum (a) ZnO (b) Ag-ZnO Nps 

Fig. 3Photoluminescence spectrum of (a) ZnO (b) Ag-ZnO Nps [inset: Potoluminescence 

excitation spectrum]. 

Fig. 4.TEM imagesof (a-b) ZnO, (c-d) Ag-ZnO and HRTEM of (e)  ZnO, (f) Ag-ZnO Nps. 
Fig. 5   Effect of (a1,a2) catalytic load, (b1,b2) pH and (c1,c2) dye concentration on the 
photocatalytic activity of ZnO and Ag-ZnO Nps. 

Fig. 6. (a) Overlaid cyclic voltammograms of bare glassy carbon electrode in absence of Pb2+and 
Cd2+ ions (a), ZnO modified glassy carbon electrode (b) and Ag doped ZnO modified glassy 
carbon electrode (c) in presence of 10 mM of Pb2+and Cd2+ ions in a acetate buffer solution of 
pH 5.0 containing 0.1 M KCl as supporting electrolyte with a scan rate of 50 mV/s. (b)Overlaid 
differential pulse anodic stripping voltammograms of the Ag doped ZnO modified electrode in 
presence of different concentration of Pb2+ and Cd2+ ions at -1.20 V. (c)Overlaid differential 
pulse anodic stripping voltammogram of Pb2+ in the concentration range 50 – 350 nM (inset 
calibration plot). (d)Overlaid differential pulse anodic stripping voltammogram of Cd2+ in the 
concentration range 50 – 350 nM (inset calibration plot). 
Fig. 7.  Antibacterial activity of (a,c) E .coli and (b,) S. aureus using ZnO and Ag-ZnO Nps. 
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Supplementary information: 

 

Fig.S1  Raman spectrum of  (a) ZnO and (b) Ag-ZnO Nps. 

Fig. S2.  UV-Vis spectrum of (a) ZnO and(b) Ag-ZnO Nps. 

Fig. S3.  CIE diagram of ZnO and Ag-ZnO Nps. 

Fig. S4. SEM images of (a-b) ZnO and (c-d) Ag-ZnO Nps. 
Fig. S5.   EDS spectrum of  (a) ZnO and (b) Ag-ZnO Nps. 

Fig. S6. Comparison study of photocatalytic activity of ZnO and Ag-ZnO Nps under (a) UV and 
(b) sunlight exposure.(c) Kinetic studies on photocatalytic degradation of Methylene blue by 
using ZnO and Ag- ZnO Nps and (d) Detection of OHradicals by PL spectrum of Coumarin 
solution. 

Fig. S7 Mechanism of heterogeneous solid acid catalyzed trans esterification (M denotes ZnO or 

Ag-ZnO) 

 

 

Research Highlights 

� For the first time reporting the ZnO and Ag-ZnO Nps through solution combustion 

synthesis using succinic acid  as low cost novel fuel. 

� Ag-ZnO Nps shows superior photocatalytic activity, antibacterial activity and biodiesel 

production compare to ZnO Nps. 

� ZnO and Ag-ZnO Nps has been used as a electrochemical interface to detect lead and 

cadmium metal ions simultaneously at nano concentration level.  

 

 

(b) 
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Graphical abstract 
 

Electrochemical heavy metal detection, Photocatalytic, Photoluminescence, 

Biodiesel production and Antibacterial activities of Ag-ZnO nanomaterial 

G. Nagaraju a*, G. C. Shivaraju a, S. A. Prashanth b, Mahesh Shastri c, K. V. Yathish a, C. 

Anupama d, Dinesh Rangappa c,  

a Department of Chemistry, Siddaganga Institute of Technology, Tumkur, Karnataka, India. 
bDepartment of Chemistry, Central College Campus, Bangalore University, Bengaluru, India 
c Department of Nanoscience and Nanotechnology, VTU  Muddenahalli, Karnataka, India. 
d Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, India. 
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Fig. 15.  ZnO (a) anti-bactrial of E .coli (50µl) (b) anti-bactrial of S. aureus (100 µl) 
and Ag- ZnO (c) anti-bactrial of E .coli (50µl) (d) anti-bactrial of S. aureus (100 µl). 
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          Fig. 1.   XRD pattern of (a) ZnO and (b) Ag-ZnO Nps. (* indicates Ag) 
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                       Fig. 2.  FTIR spectrum of the (a) ZnO and (b) Ag-ZnO Nps. 
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Page 32 of 38

Acc
ep

te
d 

M
an

us
cr

ip
t

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 
(a) 

(d) (c) 

0.27 nm 

ZnO 

(e) 

 Ag 

(f) 

 

Fig. 4. TEM images of the (a-b) ZnO, (c-d) Ag-ZnO and HRTEM of  (e)  ZnO, (f) Ag-ZnO Nps. 
[Inset of (e) and (f) Histogram of ZnO and Ag-ZnO Nps ] 
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Fig. 5   Effect of catalytic dose on the photocatalytic process of (a1) ZnO and (a2) Ag-ZnO Nps. Effect 
of pH on photocatalytic process of the (b1) ZnO and (b2) Ag-ZnO Nps and .  Effect of dye concentration 
on the photocatalytic process of the (c1) ZnO and (c2) Ag-ZnO Nps. 
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Fig. 6. (a) Overlaid cyclic voltammograms of bare glassy carbon electrode in absence of Pb2+ and 
Cd2+ ions (a), ZnO modified glassy carbon electrode (b) and Ag doped ZnO modified glassy 
carbon electrode (c) in presence of 10 mM of Pb2+ and Cd2+ ions in a acetate buffer solution of 
pH 5.0 containing 0.1 M KCl as supporting electrolyte with a scan rate of 50 mV/s. (b) Overlaid 
differential pulse anodic stripping voltammograms of the Ag doped ZnO modified electrode in 
presence of different concentration of Pb2+ and Cd2+ ions at -1.20 V. (c) Overlaid differential 
pulse anodic stripping voltammogram of Pb2+ in the concentration range 50 – 350 nM (inset 
calibration plot). (d) Overlaid differential pulse anodic stripping voltammogram of Cd2+ in the 
concentration range 50 – 350 nM (inset calibration plot). 
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Fig. 7.  Antibacterial activity of  of E .coli (a) and  S. aureus (b) of  ZnO.                   
Antibacterial activity of  of E .coli (a) and  S. aureus (b) of Ag-ZnO 
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Note: Values represent the mean ± S.E. for N=3 replicates. Probability value less than 0.10  is 

considered as significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Inhibition Zones in diameter (mm) 

E. coli S. aureus 

 

Group 

 

Treatment 

50µl 100 µl 50 µl 100 µl 

I Streptomycin 39.6±0.28 39.6±0.28 30±0.57 30±0.57 

II Deionized water No inhibition No inhibition No inhibition No inhibition 

III ZnO 12.4±0.5 10.8±0.8 15±1.2 13.8±0.8 

IV Ag-ZnO 8.8±0.8 12.6±0.8 14.6±0.5 19.2±0.8 

Table. 1. Antibacterial activity of ZnO and Ag-ZnO 
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Simarouba biodiesel 

 

 

Properties 

Units 

 

Testing 

procedure 

ASTM 

ZnO 

catalyzed  

Ag/ZnO 

catalyzed 

Biodiesel  

standard  

ASTM 6751 

Viscosity at 40 oC mm2/sec D445 5.1 4.9 1.9-6.0 

Density Kg/m3 D93 890 880 870-900 

Flash point ˚C  D4052 168 174 >130 

Copper strip corrosion, 

50 oC, 3h 

----- D130 1a 1a no. 3 max 

Acid value Mg KOH/g D664 0.7 0.62 0.8 max 

Table . 2.  Fuel Properties of Simarouba biodiesel using ZnO and Ag-ZnO  Nps. 
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Scheme. 1.   Schematic diagram of possible mechanism for photocatalytic activity 
of Ag-ZnO Nps for degradation of dye. 


