141 research outputs found

    A pattern-recognition theory of search in expert problem solving

    Get PDF
    Understanding how look-ahead search and pattern recognition interact is one of the important research questions in the study of expert problem-solving. This paper examines the implications of the template theory (Gobet & Simon, 1996a), a recent theory of expert memory, on the theory of problem solving in chess. Templates are "chunks" (Chase & Simon, 1973) that have evolved into more complex data structures and that possess slots allowing values to be encoded rapidly. Templates may facilitate search in three ways: (a) by allowing information to be stored into LTM rapidly; (b) by allowing a search in the template space in addition to a search in the move space; and (c) by compensating loss in the "mind's eye" due to interference and decay. A computer model implementing the main ideas of the theory is presented, and simulations of its search behaviour are discussed. The template theory accounts for the slight skill difference in average depth of search found in chess players, as well as for other empirical data

    Quantitative analysis by renormalized entropy of invasive electroencephalograph recordings in focal epilepsy

    Get PDF
    Invasive electroencephalograph (EEG) recordings of ten patients suffering from focal epilepsy were analyzed using the method of renormalized entropy. Introduced as a complexity measure for the different regimes of a dynamical system, the feature was tested here for its spatio-temporal behavior in epileptic seizures. In all patients a decrease of renormalized entropy within the ictal phase of seizure was found. Furthermore, the strength of this decrease is monotonically related to the distance of the recording location to the focus. The results suggest that the method of renormalized entropy is a useful procedure for clinical applications like seizure detection and localization of epileptic foci.Comment: 10 pages, 5 figure

    Effects of interspecific gene flow on the phenotypic variance–covariance matrix in Lake Victoria Cichlids

    Get PDF
    Quantitative genetics theory predicts adaptive evolution to be constrained along evolutionary lines of least resistance. In theory, hybridization and subsequent interspecific gene flow may, however, rapidly change the evolutionary constraints of a population and eventually change its evolutionary potential, but empirical evidence is still scarce. Using closely related species pairs of Lake Victoria cichlids sampled from four different islands with different levels of interspecific gene flow, we tested for potential effects of introgressive hybridization on phenotypic evolution in wild populations. We found that these effects differed among our study species. Constraints measured as the eccentricity of phenotypic variance–covariance matrices declined significantly with increasing gene flow in the less abundant species for matrices that have a diverged line of least resistance. In contrast, we find no such decline for the more abundant species. Overall our results suggest that hybridization can change the underlying phenotypic variance–covariance matrix, potentially increasing the adaptive potential of such populations

    Rapid generation of ecologically relevant behavioral novelty in experimental cichlid hybrids.

    Get PDF
    The East African cichlid radiations are characterized by repeated and rapid diversification into many distinct species with different ecological specializations and by a history of hybridization events between nonsister species. Such hybridization might provide important fuel for adaptive radiation. Interspecific hybrids can have extreme trait values or novel trait combinations and such transgressive phenotypes may allow some hybrids to explore ecological niches neither of the parental species could tap into. Here, we investigate the potential of second-generation (F2) hybrids between two generalist cichlid species from Lake Malawi to exploit a resource neither parental species is specialized on: feeding by sifting sand. Some of the F2 hybrids phenotypically resembled fish of species that are specialized on sand sifting. We combined experimental behavioral and morphometric approaches to test whether the F2 hybrids are transgressive in both morphology and behavior related to sand sifting. We then performed a quantitative trait loci (QTL) analysis using RADseq markers to investigate the genetic architecture of morphological and behavioral traits. We show that transgression is present in several morphological traits, that novel trait combinations occur, and we observe transgressive trait values in sand sifting behavior in some of the F2 hybrids. Moreover, we find QTLs for morphology and for sand sifting behavior, suggesting the existence of some loci with moderate to large effects. We demonstrate that hybridization has the potential to rapidly generate novel and ecologically relevant phenotypes that may be suited to a niche neither of the parental species occupies. Interspecific hybridization may thereby contribute to the rapid generation of ecological diversity in cichlid radiations

    Genomic architecture of adaptive radiation and hybridization in Alpine whitefish

    Get PDF
    Adaptive radiations represent some of the most remarkable explosions of diversification across the tree of life. However, the constraints to rapid diver- sification and how they are sometimes overcome, particularly the relative roles of genetic architecture and hybridization, remain unclear. Here, we address these questions in the Alpine whitefish radiation, using a whole-genome dataset that includes multiple individuals of each of the 22 species belonging to six ecologically distinct ecomorph classes across several lake-systems. We reveal that repeated ecological and morphological diversification along a common environmental axis is associated with both genome-wide allele fre- quency shifts and a specific, larger effect, locus, associated with the gene edar. Additionally, we highlight the possible role of introgression between species from different lake-systems in facilitating the evolution and persistence of species with unique trait combinations and ecology. These results highlight the importance of both genome architecture and secondary contact with hybridization in fuelling adaptive radiation

    Tuning knowledge ecosystems: Exploring links between hotels’ knowledge structures and online government services provision

    Get PDF
    The development of knowledge-based business opportunities in many economic sectors worldwide is often conceived through a silo-mentality, whereby efforts are focused in either industry or government entities in isolation. Without a systemic or holistic understanding of connections between these, any present or future project evaluation becomes either input- or output-based instead of having a comprehensive understanding of its impact. In order to address such a challenge, this empirical study focuses on the Spanish hospitality sector, which currently thrives by continuously accessing external and internal sources of knowledge, thus offering opportunities to conceptualise it as a knowledge ecosystem. Lessons learned from the Spanish hospitality sector will inform the way online government services can be better designed as part of a knowledge ecosystem for a more effective use by hotels. This will, in turn, yield further opportunities for innovation in the hospitality sector. A structural equation model validated by factor analysis of 130 hotels is used to assess the extent to which hotels currently benefit from online government services. This study concludes that online government services can be better fostered by nurturing external communities while also setting up internal working communities and practices. The model and its implications can also inform initiatives which seek to pursue ecosystem-oriented research and practice, as well as future policy and technology transfer initiatives

    Testing the radiation cascade in postglacial radiations of whitefish and their parasites: founder events and host ecology drive parasite evolution

    Get PDF
    Reciprocal effects of adaptive radiations on the evolution of interspecific interactions, like parasitism, remain barely explored. We test whether the recent radiations of European whitefish (Coregonus spp.) across and within perialpine and subarctic lakes promote its parasite Proteocephalus fallax (Platyhelminthes: Cestoda) to undergo host repertoire expansion via opportunity and ecological fitting, or adaptive radiation by specialization. Using de novo genomic data, we examined P. fallax differentiation across lakes, within lakes across sympatric host species, and the contributions of host genetics versus host habitat use and trophic preferences. Whitefish intralake radiations prompted parasite host repertoire expansion in all lakes, whereas P. fallax differentiation remains incipient among sympatric fish hosts. Whitefish genetic differentiation per se did not explain the genetic differentiation among its parasite populations, ruling out codivergence with the host. Instead, incipient parasite differentiation was driven by whitefish phenotypic radiation in trophic preferences and habitat use in an arena of parasite opportunity and ecological fitting to utilize resources from emerging hosts. Whilst the whitefish radiation provides a substrate for the parasite to differentiate along the same water-depth ecological axis as Coregonus spp., the role of the intermediate hosts in parasite speciation may be overlooked. Parasite multiple-level ecological fitting to both fish and crustacean intermediate hosts resources may be responsible for parasite population substructure in Coregonus spp. We propose parasites’ delayed arrival was key to the initial burst of postglacial intralake whitefish diversification, followed by opportunistic tapeworm host repertoire expansion and a delayed nonadaptive radiation cascade of incipient tapeworm differentiation. At the geographical scale, dispersal, founder events, and genetic drift following colonization of spatially heterogeneous landscapes drove strong parasite differentiation. We argue that these microevolutionary processes result in the mirroring of host–parasite phylogenies through phylogenetic tracking at macroevolutionary and geographical scales

    Combined effects of franchise management strategies and employee service performance on customer loyalty: a multilevel perspective

    Get PDF
    Although franchisee performance is likely to be influenced by franchisors’ management strategies, little is known about whether and how franchisors’ strategies affect franchisee employees’ performance. This study examines the combined effects of three franchisor management strategies, namely innovative culture, support services and autonomy on service performance of the franchisee store employees and the loyalty of their customers. Data were collected from a total of 38 employees and 679 customers of 25 franchisee stores. The study employs multilevel analysis on a nested data-set created by matching customer data with employee data for each store. The results reveal that customer loyalty of a franchisee store is positively influenced by the service performance of its employees and the support services received by the employees of the store from its franchisor. On the other hand, it has been found that franchisor management strategy such as innovative culture and autonomy negatively influence customer loyalty of the franchisee store. The paper discusses relevant theoretical and managerial implications of the findings

    Implications of early respiratory support strategies on disease progression in critical COVID-19: a matched subanalysis of the prospective RISC-19-ICU cohort.

    Get PDF
    Uncertainty about the optimal respiratory support strategies in critically ill COVID-19 patients is widespread. While the risks and benefits of noninvasive techniques versus early invasive mechanical ventilation (IMV) are intensely debated, actual evidence is lacking. We sought to assess the risks and benefits of different respiratory support strategies, employed in intensive care units during the first months of the COVID-19 pandemic on intubation and intensive care unit (ICU) mortality rates. Subanalysis of a prospective, multinational registry of critically ill COVID-19 patients. Patients were subclassified into standard oxygen therapy ≥10 L/min (SOT), high-flow oxygen therapy (HFNC), noninvasive positive-pressure ventilation (NIV), and early IMV, according to the respiratory support strategy employed at the day of admission to ICU. Propensity score matching was performed to ensure comparability between groups. Initially, 1421 patients were assessed for possible study inclusion. Of these, 351 patients (85 SOT, 87 HFNC, 87 NIV, and 92 IMV) remained eligible for full analysis after propensity score matching. 55% of patients initially receiving noninvasive respiratory support required IMV. The intubation rate was lower in patients initially ventilated with HFNC and NIV compared to those who received SOT (SOT: 64%, HFNC: 52%, NIV: 49%, p = 0.025). Compared to the other respiratory support strategies, NIV was associated with a higher overall ICU mortality (SOT: 18%, HFNC: 20%, NIV: 37%, IMV: 25%, p = 0.016). In this cohort of critically ill patients with COVID-19, a trial of HFNC appeared to be the most balanced initial respiratory support strategy, given the reduced intubation rate and comparable ICU mortality rate. Nonetheless, considering the uncertainty and stress associated with the COVID-19 pandemic, SOT and early IMV represented safe initial respiratory support strategies. The presented findings, in agreement with classic ARDS literature, suggest that NIV should be avoided whenever possible due to the elevated ICU mortality risk

    Implications of early respiratory support strategies on disease progression in critical COVID-19 : a matched subanalysis of the prospective RISC-19-ICU cohort

    Get PDF
    Background: Uncertainty about the optimal respiratory support strategies in critically ill COVID-19 patients is widespread. While the risks and benefits of noninvasive techniques versus early invasive mechanical ventilation (IMV) are intensely debated, actual evidence is lacking. We sought to assess the risks and benefits of different respiratory support strategies, employed in intensive care units during the first months of the COVID-19 pandemic on intubation and intensive care unit (ICU) mortality rates. Methods: Subanalysis of a prospective, multinational registry of critically ill COVID-19 patients. Patients were subclassified into standard oxygen therapy ≥10 L/min (SOT), high-flow oxygen therapy (HFNC), noninvasive positive-pressure ventilation (NIV), and early IMV, according to the respiratory support strategy employed at the day of admission to ICU. Propensity score matching was performed to ensure comparability between groups. Results: Initially, 1421 patients were assessed for possible study inclusion. Of these, 351 patients (85 SOT, 87 HFNC, 87 NIV, and 92 IMV) remained eligible for full analysis after propensity score matching. 55% of patients initially receiving noninvasive respiratory support required IMV. The intubation rate was lower in patients initially ventilated with HFNC and NIV compared to those who received SOT (SOT: 64%, HFNC: 52%, NIV: 49%, p = 0.025). Compared to the other respiratory support strategies, NIV was associated with a higher overall ICU mortality (SOT: 18%, HFNC: 20%, NIV: 37%, IMV: 25%, p = 0.016). Conclusion: In this cohort of critically ill patients with COVID-19, a trial of HFNC appeared to be the most balanced initial respiratory support strategy, given the reduced intubation rate and comparable ICU mortality rate. Nonetheless, considering the uncertainty and stress associated with the COVID-19 pandemic, SOT and early IMV represented safe initial respiratory support strategies. The presented findings, in agreement with classic ARDS literature, suggest that NIV should be avoided whenever possible due to the elevated ICU mortality risk
    corecore