903 research outputs found
Towards a single-photon energy-sensitive pixel readout chip: pixel level ADCs and digital readout circuitry
Unlike conventional CMOS imaging, a single\ud
photon imager detects each individual photon impinging on\ud
a detector, accumulating the number of photons during a\ud
certain time window and not the charge generated by the all\ud
the photons hitting the detector during said time window.\ud
The latest developments in the semiconductor industry\ud
are allowing faster and more complex chips to be designed\ud
and manufactured. With these developments in mind we are\ud
working towards the next step in single photon X-ray imaging:\ud
energy sensitive pixel readout chips. The goal is not only\ud
to detect and count individual photons, but also to measure\ud
the charge deposited in the detector by each photon, and\ud
consequently determine its energy. Basically, we are aiming\ud
at a spectrometer-in-a-pixel, or a “color X-ray camera”.\ud
The approach we have followed towards this goal is the\ud
design of small analog-to-digital-converters at the pixel level,\ud
together with a very fast digital readout from the pixels to\ud
the periphery of the chip, where the data will be transmitted\ud
off-chip.\ud
We will present here the design and measurement on prototype\ud
chips of two different 4-bit pixel level ADCs. The\ud
ADCs are optimized for very small area and low power, with\ud
a resolution of 4-bits and a sample rate of 1 Msample/s. The\ud
readout architecture is based around current-mode sense\ud
amplifiers and asynchronous token-passing between the pixels.\ud
This is done in order to achieve event-by-event readout\ud
and, consequently, on-line imaging. We need to read eventby-\ud
event (photon-by-photon), because we cannot have memory\ud
on the pixels due to obvious size constraints. We use\ud
current-mode sense amplifiers because they perform very\ud
well in similar applications as very fast static-RAM readout
Review of Research on Speech Technology: Main Contributions From Spanish Research Groups
In the last two decades, there has been an important increase in research on speech technology in Spain, mainly due to a higher level of funding from European, Spanish and local institutions and also due to a growing interest in these technologies for developing new services and applications. This paper provides a review of the main areas of speech technology addressed by research groups in Spain, their main contributions in the recent years and the main focus of interest these days. This description is classified in five main areas: audio processing including speech, speaker characterization, speech and language processing, text to speech conversion and spoken language applications. This paper also introduces the Spanish Network of Speech Technologies (RTTH. Red Temática en Tecnologías del Habla) as the research network that includes almost all the researchers working in this area, presenting some figures, its objectives and its main activities developed in the last years
Total Degree Formula for the Generic Offset to a Parametric Surface
We provide a resultant-based formula for the total degree w.r.t. the spatial
variables of the generic offset to a parametric surface. The parametrization of
the surface is not assumed to be proper.Comment: Preprint of an article to be published at the International Journal
of Algebra and Computation, World Scientific Publishing,
DOI:10.1142/S021819671100680
Design, development and field evaluation of a Spanish into sign language translation system
This paper describes the design, development and field evaluation of a machine translation system from Spanish to Spanish Sign Language (LSE: Lengua de Signos Española). The developed system focuses on helping Deaf people when they want to renew their Driver’s License. The system is made up of a speech recognizer (for decoding the spoken utterance into a word sequence), a natural language translator (for converting a word sequence into a sequence of signs belonging to the sign language), and a 3D avatar animation module (for playing back the signs). For the natural language translator, three technological approaches have been implemented and evaluated: an example-based strategy, a rule-based translation method and a statistical translator. For the final version, the implemented language translator combines all the alternatives into a hierarchical structure. This paper includes a detailed description of the field evaluation. This evaluation was carried out in the Local Traffic Office in Toledo involving real government employees and Deaf people. The evaluation includes objective measurements from the system and subjective information from questionnaires. The paper details the main problems found and a discussion on how to solve them (some of them specific for LSE)
Fully Automatic Expression-Invariant Face Correspondence
We consider the problem of computing accurate point-to-point correspondences
among a set of human face scans with varying expressions. Our fully automatic
approach does not require any manually placed markers on the scan. Instead, the
approach learns the locations of a set of landmarks present in a database and
uses this knowledge to automatically predict the locations of these landmarks
on a newly available scan. The predicted landmarks are then used to compute
point-to-point correspondences between a template model and the newly available
scan. To accurately fit the expression of the template to the expression of the
scan, we use as template a blendshape model. Our algorithm was tested on a
database of human faces of different ethnic groups with strongly varying
expressions. Experimental results show that the obtained point-to-point
correspondence is both highly accurate and consistent for most of the tested 3D
face models
Dynamical principles in neuroscience
Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?This work was supported by NSF Grant No. NSF/EIA-0130708, and Grant No. PHY 0414174; NIH Grant No. 1 R01 NS50945 and Grant No. NS40110; MEC BFI2003-07276, and Fundación BBVA
Selective Reflection Spectroscopy on the UV Third Resonance Line of Cs : Simultaneous Probing of a van der Waals Atom-Surface Interaction Sensitive to Far IR Couplings and of Interatomic Collisions
We report on the analysis of FM selective reflection experiments on the
6S1/2->8P3/2 transition of Cs at 388 nm, and on the measurement of the surface
van der Waals interaction exerted by a sapphire interface on Cs(8P3/2). Various
improvements in the systematic fitting of the experiments have permitted to
supersede the major difficulty of a severe overlap of the hyperfine components,
originating on the one hand in a relatively small natural structure, and on the
other hand on a large pressure broadening imposed by the high atomic density
needed for the observation of selective reflection on a weak transition. The
strength of the van der Waals surface interaction is evaluated to be 7310
kHz.m3. An evaluation of the pressure shift of the transition is also
provided as a by-product of the measurement. We finally discuss the
significance of an apparent disagreement between the experimental measurement
of the surface interaction, and the theoretical value calculated for an
electromagnetic vacuum at a null temperature. The possible influence of the
thermal excitation of the surface is evoked, because, the dominant
contributions to the vW interaction for Cs(8P3/2) lie in the far infrared
range.Comment: submitted to Laser Physics - issue in the memory of Herbert Walther
An Algebraic Analysis of Conchoids to Algebraic Curves
We study the conchoid to an algebraic affine plane curve C from the perspective of algebraic geometry, analyzing their main algebraic properties. Beside C, the notion of conchoid involves a point A in the affine plane (the focus) and a nonzero field element d (the distance).We introduce the formal definition of conchoid by means of incidence diagrams.We prove that the conchoid is a 1-dimensional algebraic set having atmost two irreducible components. Moreover, with the exception of circles centered at the focus A and taking d as its radius, all components of the corresponding conchoid have dimension 1. In addition, we introduce the notions of special and simple components of a conchoid. Furthermore we state that, with the exception of lines passing through A, the conchoid always has at least one simple component and that, for almost every distance, all the components of the conchoid are simple. We state that, in the reducible case, simple conchoid components are birationally equivalent to C, and we show how special components can be used to decide whether a given algebraic curve is the conchoid of another curve
- …
