15 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Data from: Adsorption of Single Polymer Molecules in Shear Flow near a Planar Wall

    No full text
    Data in text format with gnuplot scripts to generate the figures.Dutta, Sarit; Dorfman, Kevin D.; Kumar, Satish. (2013). Data from: Adsorption of Single Polymer Molecules in Shear Flow near a Planar Wall. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/155391

    Data from: Dynamics of Polymer Adsorption from Dilute Solution in Shear Flow near a Planar Wall

    No full text
    Published dataDutta, Sarit; Dorfman, Kevin D.; Kumar, Satish. (2014). Data from: Dynamics of Polymer Adsorption from Dilute Solution in Shear Flow near a Planar Wall. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/162609

    Shear-Induced Desorption of Isolated Polymer Molecules from a Planar Wall

    No full text
    We use Brownian dynamics simulations with hydrodynamic interactions to reconcile the apparent contradictions in experiments on the effect of shear flow on desorption of polymers. Our simulations show that desorption is governed by an interplay between chain-wall attraction and wall-induced hydrodynamic repulsion. When adsorption is weak, the chains form large loops and tails that generate stronger hydrodynamic interactions in the presence of the imposed shear flow, causing longer chains to desorb faster than shorter ones. In contrast, when adsorption is strong, the chains adopt a flattened conformation, weakening hydrodynamic interactions and resulting in shorter chains with fewer sticking points desorbing faster than longer ones

    Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting

    No full text
    The relative contribution of immunological dysregulation and impaired epithelial barrier function to allergic diseases is still a matter of debate. Here we describe a new syndrome featuring severe dermatitis, multiple allergies and metabolic wasting (SAM syndrome) caused by homozygous mutations in DSG1. DSG1 encodes desmoglein 1, a major constituent of desmosomes, which connect the cell surface to the keratin cytoskeleton and play a crucial role in maintaining epidermal integrity and barrier function. SAM syndrome-causing mutations resulted in lack of membrane expression of DSG1, leading to loss of cell-cell adhesion. In addition, DSG1 deficiency was associated with increased expression of a number of genes encoding allergy-related cytokines. The deciphering of the pathogenesis of SAM syndrome substantiates the notion that allergy may result from a primary structural epidermal defect
    corecore