72 research outputs found

    Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria

    Get PDF
    Successful treatment of human tuberculosis requires 6–9 months' therapy with multiple antibiotics. Incomplete clearance of tubercle bacilli frequently results in disease relapse, presumably as a result of reactivation of persistent drug-tolerant Mycobacterium tuberculosis cells, although the nature and location of these persisters are not known. In other pathogens, antibiotic tolerance is often associated with the formation of biofilms – organized communities of surface-attached cells – but physiologically and genetically defined M. tuberculosis biofilms have not been described. Here, we show that M. tuberculosis forms biofilms with specific environmental and genetic requirements distinct from those for planktonic growth, which contain an extracellular matrix rich in free mycolic acids, and harbour an important drug-tolerant population that persist despite exposure to high levels of antibiotics

    Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3

    Get PDF
    Vesicular transporters (VTs) define the type of neurotransmitter that synaptic vesicles (SVs) store and release. While certain mammalian neurons release multiple transmitters, it is not clear whether the release occurs from the same or distinct vesicle pools at the synapse. Using quantitative single-vesicle imaging, we show that a vast majority of SVs in the rodent brain contain only one type of VT, indicating specificity for a single neurotransmitter. Interestingly, SVs containing dual transporters are highly diverse (27 types) but small in proportion (2% of all SVs), excluding the largest pool that carries VGLUT1 and ZnT3 (34%). Using VGLUT1-ZnT3 SVs, we demonstrate that the transporter colocalization influences the SV content and synaptic quantal size. Thus, the presence of diverse transporters on the same vesicle is bona fide, and depending on the VT types, this may act to regulate neurotransmitter type, content, and release in space and time

    The clinical features of the piriformis syndrome: a systematic review

    Get PDF
    Piriformis syndrome, sciatica caused by compression of the sciatic nerve by the piriformis muscle, has been described for over 70 years; yet, it remains controversial. The literature consists mainly of case series and narrative reviews. The objectives of the study were: first, to make the best use of existing evidence to estimate the frequencies of clinical features in patients reported to have PS; second, to identify future research questions. A systematic review was conducted of any study type that reported extractable data relevant to diagnosis. The search included all studies up to 1 March 2008 in four databases: AMED, CINAHL, Embase and Medline. Screening, data extraction and analysis were all performed independently by two reviewers. A total of 55 studies were included: 51 individual and 3 aggregated data studies, and 1 combined study. The most common features found were: buttock pain, external tenderness over the greater sciatic notch, aggravation of the pain through sitting and augmentation of the pain with manoeuvres that increase piriformis muscle tension. Future research could start with comparing the frequencies of these features in sciatica patients with and without disc herniation or spinal stenosis

    A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour

    Get PDF
    BACKGROUND: For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. CONCLUSIONS/SIGNIFICANCE: We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms

    Modifier Effects between Regulatory and Protein-Coding Variation

    Get PDF
    Genome-wide associations have shown a lot of promise in dissecting the genetics of complex traits in humans with single variants, yet a large fraction of the genetic effects is still unaccounted for. Analyzing genetic interactions between variants (epistasis) is one of the potential ways forward. We investigated the abundance and functional impact of a specific type of epistasis, namely the interaction between regulatory and protein-coding variants. Using genotype and gene expression data from the 210 unrelated individuals of the original four HapMap populations, we have explored the combined effects of regulatory and protein-coding single nucleotide polymorphisms (SNPs). We predict that about 18% (1,502 out of 8,233 nsSNPs) of protein-coding variants are differentially expressed among individuals and demonstrate that regulatory variants can modify the functional effect of a coding variant in cis. Furthermore, we show that such interactions in cis can affect the expression of downstream targets of the gene containing the protein-coding SNP. In this way, a cis interaction between regulatory and protein-coding variants has a trans impact on gene expression. Given the abundance of both types of variants in human populations, we propose that joint consideration of regulatory and protein-coding variants may reveal additional genetic effects underlying complex traits and disease and may shed light on causes of differential penetrance of known disease variants

    Phenotypic Plasticity of the Drosophila Transcriptome

    Get PDF
    Phenotypic plasticity is the ability of a single genotype to produce different phenotypes in response to changing environments. We assessed variation in genome-wide gene expression and four fitness-related phenotypes of an outbred Drosophila melanogaster population under 20 different physiological, social, nutritional, chemical, and physical environments; and we compared the phenotypically plastic transcripts to genetically variable transcripts in a single environment. The environmentally sensitive transcriptome consists of two transcript categories, which comprise ∼15% of expressed transcripts. Class I transcripts are genetically variable and associated with detoxification, metabolism, proteolysis, heat shock proteins, and transcriptional regulation. Class II transcripts have low genetic variance and show sexually dimorphic expression enriched for reproductive functions. Clustering analysis of Class I transcripts reveals a fragmented modular organization and distinct environmentally responsive transcriptional signatures for the four fitness-related traits. Our analysis suggests that a restricted environmentally responsive segment of the transcriptome preserves the balance between phenotypic plasticity and environmental canalization

    Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated. The present work is one of the first systematic studies of the genetic basis of developmental time, in which we also evaluate the impact of environmental variation on the expression of the trait.</p> <p>Results</p> <p>We analyzed 179 co-isogenic single <it>P[GT1]-</it>element insertion lines of <it>Drosophila melanogaster </it>to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes <it>Merlin </it>and <it>Karl </it>showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic <it>P</it>-element insertion free line). In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes.</p> <p>Conclusion</p> <p>We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in <it>Drosophila</it>. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive to temperature during development. Taken together, our results stress the need to take into account the effect of environmental variation and the dynamics of gene interactions on the genetic architecture of this complex life-history trait.</p
    corecore