576 research outputs found
Excitation energy dependence of symmetry energy of finite nuclei
A finite range density and momentum dependent effective interaction is used
to calculate the density and temperature dependence of the symmetry energy
coefficient Csym(rho,T) of infinite nuclear matter. This symmetry energy is
then used in the local density approximation to evaluate the excitation energy
dependence of the symmetry energy coefficient of finite nuclei in a
microcanonical formulation that accounts for thermal and expansion effects. The
results are in good harmony with the recently reported experimental data from
energetic nucleus-nucleus collisions.Comment: 11 pages, 3 figures, revtex4; minor changes in text, axis label in
figure 1 correcte
FogGIS: Fog Computing for Geospatial Big Data Analytics
Cloud Geographic Information Systems (GIS) has emerged as a tool for
analysis, processing and transmission of geospatial data. The Fog computing is
a paradigm where Fog devices help to increase throughput and reduce latency at
the edge of the client. This paper developed a Fog-based framework named Fog
GIS for mining analytics from geospatial data. We built a prototype using Intel
Edison, an embedded microprocessor. We validated the FogGIS by doing
preliminary analysis. including compression, and overlay analysis. Results
showed that Fog computing hold a great promise for analysis of geospatial data.
We used several open source compression techniques for reducing the
transmission to the cloud.Comment: 6 pages, 4 figures, 1 table, 3rd IEEE Uttar Pradesh Section
International Conference on Electrical, Computer and Electronics (09-11
December, 2016) Indian Institute of Technology (Banaras Hindu University)
Varanasi, Indi
Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm
16 pages, 12 figures.It is shown that numerical simulations of fully-developed plasma turbulence can be successfully parallelized in time using the parareal algorithm. The result is far from trivial, and even unexpected, since the exponential divergence of Lagrangian trajectories as well as the extreme sensitivity to initial conditions characteristic of turbulence set these type of simulations apart from the much simpler systems to which the parareal algorithm has been applied to this day. It is also shown that the parallel gain obtainable with this method is very promising (close to an order of magnitude for the cases and implementations described), even when it scales with the number of processors quite differently to what is typical for spatial parallelization.Part of the research was carried out at the University of Alaska Fairbanks, funded by the DOE Office of Science Grant No. DE-FG02-04ER54741. Research was also carried out in part at Oak Ridge National Laboratory, managed by UT-Battelle LLC, for US DOE under Contract No. DE-AC05–00OR22725, and funded via the Seed Money Initiative Program.Publicad
Niobium-based superconducting nano-devices fabrication using all-metal suspended masks
We report a novel method for the fabrication of superconducting nanodevices
based on niobium. The well-known difficulties of lithographic patterning of
high-quality niobium are overcome by replacing the usual organic resist mask by
a metallic one. The quality of the fabrication procedure is demonstrated by the
realization and characterization of long and narrow superconducting lines and
niobium-gold-niobium proximity SQUIDs
Nuclear condensation and the equation of state of nuclear matter
The isothermal compression of a dilute nucleonic gas invoking cluster degrees
of freedom is studied in an equilibrium statistical model; this clusterized
system is found to be more stable than the pure nucleonic system. The equation
of state (EoS) of this matter shows features qualitatively very similar to the
one obtained from pure nucleonic gas. In the isothermal compression process,
there is a sudden enhancement of clusterization at a transition density
rendering features analogous to the gas-liquid phase transition in normal
dilute nucleonic matter. Different observables like the caloric curves, heat
capacity, isospin distillation, etc. are studied in both the models. Possible
changes in the observables due to recently indicated medium modifications in
the symmetry energy are also investigated.Comment: 18 pages and 11 figures. Phys. Rev. C (in press
Flow effects on multifragmentation in the canonical model
A prescription to incorporate the effects of nuclear flow on the process of
multifragmentation of hot nuclei is proposed in an analytically solvable
canonical model. Flow is simulated by the action of an effective negative
external pressure. It favors sharpening the signatures of liquid-gas phase
transition in finite nuclei with increased multiplicity and a lowered phase
transition temperature.Comment: 13 pages, 5 Post Script figures (accepted for publication in PRC
The three-dimensional Ising model: A paradigm of liquid-vapor coexistence in nuclear multifragmentation
Clusters in the three-dimensional Ising model rigorously obey reducibility
and thermal scaling up to the critical temperature. The barriers extracted from
Arrhenius plots depend on the cluster size as where
is a critical exponent relating the cluster size to the cluster
surface. All the Arrhenius plots collapse into a single Fisher-like scaling
function indicating liquid-vapor-like phase coexistence and the univariant
equilibrium between percolating clusters and finite clusters. The compelling
similarity with nuclear multifragmentation is discussed.Comment: (4 pages, 4 figures
Effect of Flow on Caloric Curve for Finite Nuclei
In a finite temperature Thomas-Fermi theory, we construct caloric curves for
finite nuclei enclosed in a freeze-out volume few times the normal nuclear
volume, with and without inclusion of flow. Without flow, the caloric curve
indicates a smooth liquid-gas phase transition whereas with flow, the
transition may be very sharp. We discuss these results in the context of two
recent experiments, one for heavy symmetric system (Au + Au at 600A MeV) and
the other for highly asymmetric system (Au + C at 1A GeV) where different
behaviours in the caloric curves are seen.Comment: 11 pages revtex; 4 figs; version to appear in Phys. Rev. Let
Rare isotope production in statistical multifragmentation
Producing rare isotopes through statistical multifragmentation is
investigated using the Mekjian method for exact solutions of the canonical
ensemble. Both the initial fragmentation and the the sequential decay are
modeled in such a way as to avoid Monte Carlo and thus provide yields for
arbitrarily scarce fragments. The importance of sequential decay, exact
particle-number conservation and the sensitivities to parameters such as
density and temperature are explored. Recent measurements of isotope ratios
from the fragmentation of different Sn isotopes are interpreted within this
picture.Comment: 10 eps figure
- …
