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a b s t r a c t

It is shown that numerical simulations of fully-developed plasma turbulence can be suc-

cessfully parallelized in time using the parareal algorithm. The result is far from trivial,

and even unexpected, since the exponential divergence of Lagrangian trajectories as well

as the extreme sensitivity to initial conditions characteristic of turbulence set these type

of simulations apart from the much simpler systems to which the parareal algorithm has

been applied to this day. It is also shown that the parallel gain obtainable with this method

is very promising (close to an order of magnitude for the cases and implementations

described), even when it scales with the number of processors quite differently to what

is typical for spatial parallelization.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In magnetically confined hot plasmas with interest for fusion research, such as those confined in a tokamak or a stella-

rator, the disparity in timescales between the microturbulence responsible for the transport processes and the plasma con-

finement times is of the order of 106–109. Thus, in order to properly capture the transport dynamics of these strongly

turbulent plasmas, they would need to be simulated for thousands or even tens of thousands of turbulent decorrelation

times. Such a task is currently well beyond the reach of even the most powerful supercomputers. As a result, simplified ap-

proaches are used in which the microturbulence is only evolved for a few tens of decorrelation times under the assumption

that the dynamics become decorrelated after this timescale, together with the assumption that plasma profiles can be as-

sumed ‘frozen’ during these timescales. These approximations enable a description via effective transport coefficients de-

rived from these restricted simulations, whose validity should however be checked a posteriori, whenever possible. But

even with these simplifying approximations, these simulations are still extremely challenging from a computational point

of view [1]. On the one hand, because parallelization along the space domain reaches saturation (typically, at a few thousand

CPUs in most codes, as a result of Amdahl’s law and inter-processor communication overflow), for which a further increase of

the number of processors beyond a certain point does not contribute to enhanced speed-up. On the other hand, higher spa-

tial resolutions imply the use of smaller time steps for numerical stability reasons. This makes that reaching the needed sim-

ulation times takes much longer, due to the serial nature of the temporal coordinate. The situation becomes even more

dramatic in cases in which the aforementioned simplifications may not be justified, as might be the case when turbulence

is near-marginal [2], or in the presence of strong sheared flows [3].
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It thus seems self-evident that if these turbulent simulations could also be parallelized in time (in addition to their spatial

parallelization), it would enable a more efficient utilization of the many processors currently available in supercomputers

while, at the same time, allowing the running of much longer simulations in considerably shorter wallclock times. This

would also open the path to including a more complete set of the physics in the simulations in the near future, maybe even

the full transport dynamics. Various approaches have been proposed over the years to decompose the time direction when

solving a partial differential equation [4–13], although with varying degrees of success. Of these, the parareal (parallel in

time) algorithm, which we explore in this paper, was first proposed by Lions et al. [14] and has received an increasing

amount of attention in recent years. It has been successfully applied to a number of relatively simple problems, like molec-

ular dynamics simulations [15], linear and nonlinear parabolic ordinary differential equations [16,17], stochastic ordinary

differential equations [18], reservoir simulations [19] and even, the laminar regime of the Navier–Stokes equation [20].

The scheme has also been applied very recently to the Princeton ocean model, dominated by convection, although with a

rather modest success [21].

In this paper, we report the first (and very promising) results regarding the parallelization of the temporal direction of

numerical simulations of turbulent plasmas using the parareal algorithm. To the best of our knowledge, the parareal tech-

nique has never been applied to a fully-developed turbulent problem, although it has been used successfully with low-

dimensional chaotic systems, such as the Lorenz system [22]. Turbulent systems represent a very challenging case of study,

and there are in fact many reasons to expect failure. Indeed, the parareal algorithm parallelizes along time, despite the

sequential nature of the time domain, using a predictor–corrector approach. Since the corrector step carried out at each cycle

of the algorithm feeds on the results of the uncoupled predictor runs, it might be expected that the strong sensitivity to ini-

tial conditions and exponential divergent growth of uncertainties characteristic of turbulence should deteriorate or even im-

pede the convergence of the algorithm, in contrast to what happens in a more laminar regime. In this paper we show that

this is not the case, and that the parareal method, when properly tuned, can be applied successfully to fully-developed tur-

bulent simulations and yields considerable parallel speed-ups (an order of magnitude, for the cases studied here).

In order to avoid the complexities associated with the toroidal geometries characteristic of fusion plasmas, we have cho-

sen to apply the parareal method to a simpler dissipative-trapped electron mode (DTEM) turbulence model in a doubly-peri-

odic slab geometry. Some kind of drift wave turbulence is the most probable candidate for governing transport in these

plasmas and thus, this model has been studied extensively [23–26]. For its numerical implementation we use the BETA code

[23], which uses a pseudo-spectral approach and advances the system in time using an implicit, preconditioned integrator.

BETA routinely provides with fully-developed turbulent states, with large positive Lyapunov exponents. It thus provides an

excellent platform to explore and test the merits of the parareal method in this context, before embarking on its implemen-

tation in any of the state-of-the-art codes used by the fusion community. The paper is thus organized as follows. Section 2

briefly reviews the parareal algorithm. The physics of the DTEM model are then described in Section 3. Section 4 introduces

an analysis of the parallel performance to be expected from the algorithm, which will clarify its strong and weak points as

well as guide us through its tuning. Next, Section 5 comprises the numerical results obtained in this study. Finally, some con-

clusions are drawn in Section 6.

2. The parareal algorithm

In this section, we provide a review of the basic algorithm, including some modifications of our own devising that are

appropriate to the turbulent context and yield a significant boost in its performance.

2.1. Review of the algorithm

The parareal algorithm is based on a predictor–corrector iterative approach. It is best understood by describing its appli-

cation to a single ordinary differential equation of the type:

dk

dt
¼ Aðk; tÞ; kð0Þ ¼ k0; ð1Þ

where A is an arbitrary, possibly nonlinear, function. Let us assume that we are interested in finding the value of k at some

later time T > 0. Let us also assume that we can numerically advance this equation from an arbitary time t 2 [0,T] to time

t + dt by means of several discretization schemes. We will formally write this advance using;

kðt þ dtÞ ¼ Ftdt � kðtÞ; ð2Þ

where F represents our advancing operator, acting on the appropriate space to which k belongs, and dependent on the dis-

cretization scheme chosen (the superscript t is used here to denote that the operator may depend explicitly on t, although we

will drop it in what follows). Clearly, to go from the initial time to T, we will need to apply F as many times as required given

the value of dt.

The parareal algorithm assumes that there are two different advancing operators (or solvers) at our disposal, that we will

denote as F and G. The distinction between these two solvers is that G is much faster (usually at the price of being coarser and

more inaccurate) than F, the one we are really interested in using for our problem but which is computationally too expen-
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sive to be run serially between the initial time and T. In the parareal algorithm, G is run serially between t = 0 and T, whilst F

is always run in parallel. Let us see how this works.

Let there be N processors, denoted by P0,P1,P2,P3, . . .,PN�1. Let the total simulation time, T, be divided into N smaller

chunks of size DT = T/N. In what follows, the i index is used to represent the ith instant of time defined as ti = i�Dt for

i = 0,1,2, . . .,N. The index k = 0,1,2, . . . represents the iteration number in the parareal cycle. Then, kki represents the solution

at time ti at the kth iteration of the parareal cycle. The initial value, that is already given, is then denoted by k00.

The steps involved in the parareal scheme are as follows:

� Iteration k = 0:

P0 uses G serially to calculate initial values k0i for the start time of every time chunk, ti.

� Iteration k > 0:

Step 1 : Each processor (i.e., Pj) then separately applies F to propagate the solution, starting with the initial values pro-

vided by G (i.e., kk�1
j ), between the initial (tj) and final time (tj+1) of its respective time chunk. This process is

of course carried out in parallel. The result of this propagation is forwarded to the next processor in line (Pj+1).

Step 2 : G is now applied as a sequential (but not continuous) process, using the parareal prescrition to update the initial

value at each time chunk:

kkþ1
iþ1 ¼ GDTðk

kþ1
i Þ þ FDTðk

k
i Þ � GDTðk

k
i Þ: ð3Þ

Note that this part of the algorithm cannot be done in parallel, because of the first term on the right hand side.

Note also that the second and third terms have already been obtained in previous steps and/or iterations.

Step 3 : Check for convergence. The measure of convergence is discussed in the next subsection. If the solution is con-

verged for all chunks, the cycle is exited. Otherwise, another iteration of the parareal cycle is done which, in

the standard implementation, involves all chunks. This will not be the case in our simulations, as discussed in

the next subsection.

Some remarks are useful at this point. First, in order for the parareal cycle to converge, certain mathematical conditions

must be satisfied by G and F, which were made explicit in Lions et al. seminal paper and appear as specific conditions on the

boundedness of the norm of the difference between the two solvers in an appropriate mathematical space [14]. Regretfully, it

is very difficult (if not impossible) to translate these conditions into a practical prescription for any particular problem. Trial

and error, combined with experience, seems to be the most reliable guide to choose G. However, note that in practice, the

parareal algorithm will always converge in at most N interactions, independently of how ’badly’ G is chosen. This happens

because, at the end of iteration k = 1, both P0 and P1 already have the correct value of the solution, since F has been used in

the first processor to propagate the exact initial condition at t = 0. For the same reason, at k = j, all processors P0, . . .,Pj already

have the correct value. And so on. However, note also that if N cycles are finally needed to converge to the exact solution, we

would have used the same (or more, including communications and time for G) wallclock time that if we had run the sim-

ulation serially with F. So no parallel speed-up is gained, and we would have done N times more computing work! Thus,

parareal works only if convergence is achieved for a number of cycles Kmuch smaller than N, implying that at each iteration

more than one chunk needs to converge on average. Whether this is the case or not will depend on our ability to choose G for

a given F.

2.2. Metric for convergence

Convergence is achieved whenever some convergence measure reduces below a certain prescribed tolerance. Following

with our previous example, in which kk(t) represents the solution at time t in the kth iteration of the parareal algorithm, we

define the local convergence measure as,

rki ¼
Z ti

ti�1

kkðsÞ � kk�1ðsÞ
�

�

�

�

�

�

kk�1ðsÞ
�

�

�

�

�

�

ds: ð4Þ

That is, the average relative error between the solution at the kth and the (k � 1)th parareal cycles integrated over each

chunk i. It should be noted that we have purposely avoided using the exact serial solution that F would provide, since it

is not useful in practice due to the fact that, in most cases of interest it will not be known, since the main aim of the parareal

scheme is to replace calculations involving serial processors! The solution is then converged up to time chunk I if,

rki < tol; 8i 6 I: ð5Þ

Typically, convergence occurs in an orderly fashion, starting with the first chunk and propagating to later times due to the

fact that errors are propagated (and enhanced) in that direction by the parareal cycle. This fact has prompted us to modify

the standard parareal algorithm in the following way: instead of ’correcting’ the solution at each parareal cycle starting with

the first chunk,we perform the ’correction’ only for those chunks corresponding to times larger than the last converged chunk time.

In this way, one still obtains a reasonably converged solution, and avoids at the same time resonances that may deteriorate
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the solution at already converged chunk times as observed in some problems [12]. With this modification, the cases that will

be discussed in Section 5 have been made to converge using up to four times less parareal cycles than with the original

prescription.

2.3. Particulars of the application of the parareal method to fully-developed turbulent simulations

We now discuss some crucial issues pertaining to turbulent systems which are relevant to the application of the parareal

algorithm to the BETA simulations. First, it should be noted that for any numerical simulation of a very high dimensional

chaotic system with positive Lyapunov exponents, it is impossible to define a unique solution. The reason is that these sys-

tems exhibit exponential Lagrangian (i.e., along turbulent trajectories) divergence and as a result the final solution depends

very sensitively on the initial values. So sensitively that, in fact, a serial run done with the same parameters and numerical

scheme, but compiled using two different compilers or run on two different machines unavoidably leads to different results

when the simulation time is long enough. But note that this fact does not make the solutions worthless because even when

different, they are statistically identical. What we mean by that is that the fluctuations exhibit the same statistical and cor-

relation properties at saturation, even if the fluctuations are not identical when compared point-by-point at every time. That

is, if one compares the probability distribution function (pdf) of the fluctuations at any point, or the temporal or spatial cor-

relation functions, all these solutions will give the same results. The reason is ultimately the fact that the Eulerian (i.e., fixed

point) fluctuations are bounded by the finite saturated fluctuation levels, which are themselves limited by the finite amount

of free energy available to the system. This fact translates into the simulations having well-defined statistical properties. So,

although the Lagrangian trajectories diverge due to their high sensitivity to initial conditions, the solutions are statistically

indistinguishable. And this is ultimately what matters, specially when what one cares about is the mean transport or dynam-

ics of these simulations. In the case of the parareal scheme just sketched, this observation is essential, because the scheme

matches together solutions obtained at different chunks. If the mismatch at those connecting times could grow exponen-

tially without bound, it might prevent any convergence of the method (in fact, this is why it has been suggested that turbu-

lence and parareal would be a deadly mix). But on the contrary, the same boundedness that exists for Eulerian fluctuations

holds also for these mismatches. As we will show in what follows, a solution can be found by the parareal method. And it is

very easy to see that this parareal solution, although not identical to the serial one obtained starting from the same initial

values, is statistically identical in the sense previously described.

A second important aspect regarding the parareal parallelization of turbulent simulation has to do with the convergence

measure. As discussed in the previous subsection, the traditional parareal method computes the relative error between the

solution of the problem at two successive parareal cycles. In the case of a turbulent simulation, the number of degrees of free-

dom is enormous (for instance, �6 � 105 for the BETA simulations used in this paper), which would make the construction of

the convergence measure rather cumbersome. However, it turns out that this is not needed. In fact, we will show that it is

enough to require convergence in one global quantity. In our case, the time history of the energy in the system, defined as:

E/ðtÞ ¼
X

k

/kðtÞ � /
�
kðtÞ; ð6Þ

where /k(t) is the (complex) amplitude of the Fourier harmonic with wave number k (see Section 3 for details). Then we will

show that, if the relative error between successive cycles of the total energy is less than a prescribed tolerance, all the indi-

vidual modes containing enough energy to affect that tolerance value are also converged. This is a remarkable result, which

simplifies the calculation enormously. It is ultimately due to the fact that in a fully-developed turbulent system, the relative

energy fluxes between any pair of modes are set by the non-linearities, which endows the system with a very strong and

resilient coupling [27]. Thus, convergence in one quantity is only possible if all others converge simultaneously, so that

the relations imposed by this coupling are preserved. We indeed observed this in our simulations, as will be shown later.

3. The model

The parareal algorithm is applied in what follows to numerical simulations of a reduced model, which is a paradigm of

plasma drift waves derived in the limit of long wavelengths and a two-dimensional (x � y) slab geometry. This limit of the

DTEM model has been extensively studied in the plasma physics literature [23,25]. It assumes that a uniform magnetic field

that confines the plasma exists perpendicular to the slab (i.e., along ẑ), and that all profile gradients are directed along the x̂

direction. These gradients are responsible for the existence of drift waves that propagate along the ŷ direction. The under-

lying instability is assumed to be the dissipative-trapped electron mode (DTEM). Plasma ions are treated as a cold fluid, while

electrons are assumed to satisfy the Boltzmann relation except for those trapped in the magnetic ripple, which contribute to

the dynamics in a way that allows the drift waves to grow unstable. The model can be reduced to a single equation for the

potential fluctuations by assuming quasi-neutrality and using the long-wavelength limit to retain only the so-called E � B

non-linearity:

@

@t
ð1� q2

sr
2
?Þ

~/þ D
@2~/

@y2
þ
VD
2

@~/

@y
�
4LnD

�
1=2

r?

@~/

@y

 !

� z

" #

�r?
~/ ¼ 0: ð7Þ

4



Here, ~/ is the fluctuating potential. VD ¼ �
1=2ðcT i=eBÞL

�1
n represents the effective diamagnetic drift velocity, Ti being the ion

temperature, ��1/2 the fraction of trapped electrons, B the magnetic field strength and Ln the density gradient scale length.

D ¼ V2
D=4meff ;e, where meff,e is the effective collision frequency of ion–electron collisions. The last term on the left hand side of

Eq. (7) represents the E � B non-linearity, the second one is the instability drive and the third one is the one which causes the

drift waves to propagate along the y direction.

The numerical solution of this model is done using the spectral code BETA [23]. The Fourier transform of Eq. ( 7) has the

form:

d~/k
dt

�
Dk

2
y

1þ q2
s k

2
?

~/k þ
iVDky

2ð1þ q2
s k

2
?Þ

~/k �
4iLnD

�
1=2ð1þ q2

s k
2
?Þ

X

k0

k
0
yðk� k

0
� zÞ~/k~/k�k0 ¼ Sk � Tk; ð8Þ

where ~/k are the (complex) Fourier harmonics of the potential. Sk are sources and Tk are sinks in k-space that may also be

added at this point for convenience. This set of ordinary differential equations (ODEs) are solved using a pseudo-spectral

method to evaluate the non-linearities. Time is advanced by the stiff solver within the VODPK package [28], which uses a

(diagonally, right-) preconditioned, Krylov implicit solver based on backward differentiation formulas of variable order

and timestep, that are tuned as the integration proceeds in order to keep the errors below a prescribed tolerance.

An example of a typical simulation is shown in Figs. 1 and 2. The first one shows a snapshot of the vorticity distribution in

the system at saturation (the local turbulent velocity is obtained from the potential via v ¼ r?/� ẑ, so that the vorticity is

given by w ¼ r2
?/). It illustrates a salient feature of a turbulent system – namely, the existence of eddies at multiple scales,

which non-linearly interact with each other. Also, the anisotropy introduced by the explicit dependence on ky of the model

can be noticed. Fig. 2 is a plot of the power spectrum that shows that the system is in a state of fully-developed turbulence

with most of the energy concentrated at low k values. If one computes the Lyapunov exponent of the system, it is large and

positive as expected. This is illustrated in Fig. 3, that shows the log-linear plot of the separation of two initially close trajec-

tories along the x and y directions with time, the slope of which gives the Lyapunov exponent.

4. Expected performance of the parareal algorithm

In order to gain some insight on what could be expected from the parareal algorithm (and, perhaps, also allow us to de-

sign an optimal coarse solver), we carry out in this section a small study on the performance of the model. Two regimes are

examined: the so-called strong and weak scaling regimes. In the strong one, the performance as a function of the number of

processors (denoted by N) is examined for a problem of fixed size in time. In the weak regime, the performance as a function

of N is considered as the problem is made longer, but keeping the part of the simulation done by a single processor constant.

In perfect parallelism, one should find that the speed-up in the strong scaling improves as N whilst, in the weak regime, one

finds that the work-per-processor remains constant as N is increased. Of course, in spatial parallelization these ideal scalings

are only maintained up to a certain number of processors, above which the serial part of the calculation (i.e. Amdahl’s law) or

the inter-processor communication dominate the calculation time. Due to the iterative nature of the parareal cycle, its strong

Fig. 1. Snapshot of vorticity for a typical BETA long-wavelength DTEM simulation.
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and weak scalings are somewhat different, which sets this type of parallelization apart from spatial parallelization strategies.

We briefly discuss them in what follows.

4.1. Strong scaling

We first consider the case in which the problem to be solved is fixed in size or, in our case, the final time T that must be

reached at the end of the simulation is fixed. In the parareal algorithm, two propagators are used – G and F. Let the wallclock

time to solve the problem (even if much more inaccurately) serially using G be TserG ðTÞ, and to solve it serially with F, be

TserF ðTÞ. We then define the parameter b as the ratio of these two times:

b ¼
TserF ðTÞ

TserG ðTÞ
: ð9Þ

That is, b measures how much faster G is. Clearly, b > 1, as G is the cheap solver. In each cycle of the parareal algorithm, F is

applied in parallel with N processors for a period of the simulation DT = T/N, and G is run in serial for the whole length of the

simulation T. Thus, the total time to solve the problem can be estimated (ignoring overheads) as:

TPA ¼ ksðNÞ TserG ðTÞ þ
TserF ðTÞ

N

� �

; ð10Þ

Fig. 2. Power spectrum (in lin–log scale) for the same BETA simulation shown in Fig. 1.

Fig. 3. Separation of two initially close trajectories as a function of time for the same BETA simulation shown in Fig. 1. Both x (black) and y (red) directions

are included. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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where ks(N) is the number of iterations of the parareal cycle required to achieve convergence, which is an unknown function

of N. Thus, the parallel speed-up factor (or gain) for the parareal algorithm is given by:

HPAðNÞ ¼
TserF ðTÞ

TPA
¼ ksðNÞ

1

b
þ

1

N

� �� ��1

: ð11Þ

Note that the typical strong scaling for spatial parallelization, H(N) = N, is only recovered when b?1 and ks(N) = 1. But in

the parareal case, ks(N) will be a function of N and b will be finite. Success or failure of the parareal will depend on the value

for ks(N), which will depend itself on the choice of the coarse solver G. But even without knowing ks(N) at this point, several

things can be learnt from this model. First, b seems to roughly set the maximum number of processors for which the parareal

method yields any net parallel gain. For N much larger than this value, the serial part of the code dominates the calculation

and, as predicted by Amdahl’s law, performance deteriorates quickly (although our numerical simulations will show that this

statement needs to be somewhat revised!). Secondly, a net parallel gain is obtained only for as long as ks(N) < N. In the next

section we will construct a phenomenological model for this function based on the BETA simulations.

4.2. Weak scaling

We next consider the case in which the problem to be solved has a length T = N�DT, being DT fixed. That is, the problem

length increases linearly with the number of processors. As we said previously, in perfect parallelism one would expect that

the wallclock time required to do the simulation is independent of N, since its processor would be doing exactly the same

amount of work. That is,

W �
TNðN � DTÞ

T1ðDTÞ
¼ 1; ð12Þ

where Tn(t) denotes the wallclock time needed to solve a problem of length t using n processors. In the parareal case, the time

needed to solve a problem of size N�DT using N processors is:

TwPA ¼ kwðNÞ N � Tser
G ðDTÞ þ Tser

F ðDTÞ
 �

; ð13Þ

from which the work for processor becomes:

WPAðNÞ �
TwPA

Tser
F ðDTÞ

¼ kwðNÞ 1þ
N

b

� �

ð14Þ

Note that the function kw(N) is different from ks(N), since now T is not kept fixed. As before, the classical weak scaling for the

spatial case,WPA = 1, is only recovered if b?1 and if kw(N) = 1. This will certainly not be the case. Again, it seems clear that b

roughly sets the maximum number of processors for which a favorable scaling for the work-per-processor should be ex-

pected, although how good the scaling would be ultimately depends on the form of kw(N). We will also use BETA simulations

to try to get its phenomenological form in the next section.

5. Results

In what follows, we describe the results of applying the parareal method to parallelize in time a typical BETA simulation

that implements the DTEM model as described in Section 3. The run used has a resolution of 385 � 385 (complex) modes in

Fourier space [i.e., (kx, ky), with kx and ky running between �kmax and +kmax, with kmax = 192], and corresponds to a restart

from an already non-linearly saturated run, in which the initial values of the mode amplitudes are read from a pre-existing

file. Turbulence is fully developed at this stage. All linearly unstable modes in the simulation have jkj < 70, value that roughly

sets the starting point of the dissipation range. Stability at higher k’s is ensured by using a hyperviscosity. The (modified)

parareal cycle has been implemented in BETA by making extensive use of subroutines from the Message Passing Interface

(MPI) libraries. The different solvers are added as separate subroutines (one for F, and as many as desired for all the G’s that

will be tested), and are called as required within the parareal cycle. The section is structured as follows: first, we will simply

describe a typical simulation to show that the method works. Secondly, we will use all the simulations we have done to con-

struct a phenomenological model for k(N,T), that gives the number of parareal cycles needed for convergence once N and T

are prescribed. We will use this function in the final two subsections, that describe the results of two scaling studies: one for

the strong scaling regime, and a second for the weak scaling one.

5.1. Parallelization in time via the parareal scheme of BETA simulations

As already mentioned in the previous section, the success of the parareal scheme depends on making a sound choice of G.

In fact, arguments could be made, based on the sensitivity to initial conditions and the exponential divergence of Lagrangian

trajectories present in turbulent situations, to the effect that such a choice should not exist in a turbulent system, and that

the parareal algorithm will inevitably need K = N iterations to converge when using N processors. The results presented and
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discussed in this section simply intend to show that this is not the case, and that convergence can be indeed achieved for

K� N, which in itself is a quite remarkable result.

After exploring multiple options for G, we have found that one that seems to work pretty well is solving the problem using

a smaller resolution in k-space (that is, using a smaller kmax than F) and, in addition, changing the time-advance scheme to

something simpler with respect to the fine solver F. The smaller resolution allows us to use a much larger time step, dtG, for

the time advance (in comparison to that used by the fine solver, dtF). This, in combination with the simpler implementation

(for instance, we have tried 2nd and 4th Runge–Kutta (RK) schemes, in addition to the original VODPK scheme), allows us to

reach values of b as large as b � 1000. However, the best results (i.e., maximum parallel gain) are not obtained for the largest

b. The reason is that the strategies used to speed up G (and thus increase b) may also increase the number of cycles required

for convergence for a given number of processors N (i.e., the functions ks(N) and kw(N) from the previous section). For in-

stance, we have observed that if the region of k-space solved by G is too restricted (if kmax is too small), the parareal perfor-

mance deteriorates quickly. The minimum acceptable size seems to be imposed by the physics of the underlying turbulence:

the reduced k-space region must contain a sufficient number of dissipative scales!

We conclude this subsection by showing an example of a successful parallelization in time of a BETA simulation using the

parareal method. In Fig. 4, the time history of the total energy of a saturated BETA simulation is shown as a function of the

parareal cycle, k. The coarse solver used for G is a 4th-order RK scheme with dtG = 40dtF, and including only a reduced k-

space of size 201 � 201 harmonics (i.e., kmax = 100). The serial time of the simulation (that has a total length of

T = 7040dtF) using the fine solver is 2.62 h on the pingo supercomputer at the Arctic Research Supercomputing Center (ARSC)

at Fairbanks. The coarse solver G is about 200 times faster than F (in fact, b = 210.3). Using N = 88 processors (which corre-

sponds to time chunks of size DT = 80dtF), the parareal calculation converges in only K = 5 cycles (see inset in Fig. 4), requir-

ing only 0.29 h. That is, the parareal scheme yields a speed-up HPA = 8.80. In Fig. 5, we also show the time history of the

energy contained in one of the low-k modes (in particular, the (kx,ky) = (0,�1) mode), to show that convergence of the total

energy also implies convergence of the individual harmonics as previously stated. Similar behavior is also observed at

modes with higher k’s, at least until the contribution to the total energy of the mode gets of the order or smaller than

the required tolerance. Thus, there is no doubt that the parareal method can be applied successfully to fully-developed tur-

bulent simulations.

5.2. Phenomenological model for k(N,T) for the BETA model

We now carry out the first step in the determination of two unknowns of the performance model from BETA simulations:

ks(N) (strong scaling) and kw(N) (weak scaling). That step is the building of a model for k(N,T), the number of parareal cycles

needed to converge a simulation of length T using N processors (the chunk size is then DT = T/N).

We proceed as follows. First, we use the simulations to ‘measure’ the convergence rate function, Dn(k;N,T), defined as the

number of new, successive time chunks converged during the parareal cycle k. We have collected this information for many

runs with various values of length T and number of processors N, and using various implementations for the coarse solver G.

Interestingly, all of them seem to follow the same pattern, that is sketched in Fig. 6: at first only one chunk (the minimum

possible, since that is the rate at which the F solution advances!) is converged per cycle for the first k1 parareal cycles. Then,

after k > k2 cycles (k2 > k1), the convergence rate is again roughly constant, but equal to some value B > 1. In the intermediate

region, i.e. for cycles k1 < k < k2, we assume that the convergence rate is described by a linear model. That is:

Fig. 4. Total energy as a function of time for a BETA run using N = 88 processors and chunk size DT = 80 as a function of the parareal cycle index k. Coarse

solver is a 4th order Runge–Kutta described in Section 5. Convergence is observed at k = 5. Inset: Relative error averaged over all chunks as a function of k.
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Dnðk;N; TÞ ’

1; k 6 k1;

1þ B�1
k2�k1

� �

ðk� k1Þ; k1 < k < k2;

B; kP k2;

8

>

>

<

>

>

:

ð15Þ

where the slope of the linear part is m = (B � 1)/(k2 � k1). To find k(N,T) from Eq. (15), one first computes n(k;N,T), the accu-

mulated number of converged time chunks via integration of Dn(k;N,T):

nðk;N; TÞ ¼

k; k 6 k1;

kþ 1
2

B�1
k2�k1

� �

ðk� k1Þ
2; k1 < k < k2;

Bk� B�1
2
ðk2 þ k1Þ; kP k2;

8

>

>

<

>

>

:

ð16Þ

Finally, one inverts n(k;N,T) = N to get:

kðN; TÞ ¼

N; N 6 N1;

k1 þ
k2�k1
B�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ðB� 1Þ N�k1
k2�k1

q

� 1
n o

; N1 < N < N2;

N
B
þ B�1

2B
ðk2 þ k1Þ; N P N2;

8

>

>

<

>

>

:

ð17Þ

where N1 = k1 and N2 = [(B + 1)k2 � (B � 1)k1]/2.

Fig. 5. Convergence history of the energy contained in the low-kmode (kx, ky) = (0, �1) as a function of the parareal cycle index k for the same run as Fig. 4.

Inset: Relative error averaged over all chunks as a function of k.
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Fig. 6. Sketch shows the typical features of the convergence rate function Dn(k;T,N) observed in the BETA simulations discussed in Section 5.
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However, Eq. (17) is still not very useful at this point because the values of k1, k2 and B change with T and N, even when the

coarse solver G remains unchanged. An important observation at this point is that these values seem to be roughly constant

when the simulations keep DT fixed and use the same coarse solver. For example, Fig. 7 shows the convergence rate func-

tions Dn(k;T,N) for various runs done using as G the same VODPK stiff solver as for the fine solver F, but including only

145 � 145 modes (i.e., kmax = 72) and dtg = 4dtF (i.e., b = 16.3) [of course, there are important fluctuations around the mean

values, but that is also a consequence of the fact that one must take discrete derivatives to compute them]. This observation

suggests that maybe one can find more universal quantities if k1, k2 and B are expressed in physical time units. And indeed,

we have found that for each fixed solver G, t1 � N(k1)�DT, t2 � N(k2)�DT and b = B�DT (that is, expressed in units of dtF, our

physical timescale) are roughly the same for all the simulations. An example is shown in Fig. 8. The inset shows the conver-

gence rate functions Dn(k) obtained again with the VODPK stiff solver as G for simulations with various chunk sizes and

number of processors. They have a general shape similar to that sketched in Fig. 6, but the parameter values are all different.

However, when expressed using physical units, all of them collapse to the same universal curve. What these observations

suggest is that there appears to be two timescales (t1 and t2) that must be resolved before the scheme can transition from
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a slow (i.e., 1 chunk per cycle) to a fast convergence rate b which is independent of DT, or T, or N, once the coarse solver is

chosen.

Thus, the values of {t1, t2, b, b} seem to be a good practical way to characterize each G in the parareal context. We have

collected in Table 1 the values of these quantities for the three coarse solvers discussed in this paper; (1) the VODPK solver

with kmax = 72 and dtG = 4dtF just discussed; (2) a 4th-order RK with kmax = 100 and dtG = 40dtF; and (3) a 2nd-order RK with

kmax = 100 and dtG = 8dtF. The last two coarse solvers will be used in the strong and weak scaling sections. Once t1, t2 and b are

known (for the coarse solver G chosen), the model for k(N,T) given by Eq. (17) can be completed via the inverse relations:

k1ðN; TÞ ¼
t1N

T
; BðN; TÞ ¼

bN

T
; ð18Þ

k2ðN; TÞ ¼ 2
t2N

T
þ

bN

T
� 1

� �

t1N

T

� �

=
bN

T
þ 1

� �

: ð19Þ

5.3. Strong scaling study

We are now in a position to discuss the strong scaling properties of the parareal method when applied to the BETA runs.

We start by deriving an expression for ks(N) from Eq. (17). To do that, it is sufficient to require that T, the length of the sim-

ulation, be fixed. The result depends on how T compares with the other two timescales present, t1 and t2:

ksðNÞ ¼

N; T < t1;
t1
T
N þ Rðt1; t2; b; T;NÞ; t1 < T < t2;

T
b
þ

bN
T
�1

bN
T
þ1

ðt2
b
þ t1

T
NÞ; T P t2;

8

>

>

<

>

>

:

ð20Þ

where the complicated function for the transition range of T’s is given by:

Rðt1; t2; b; T;NÞ �
2ðt2 � t1Þ

N
T

bN
T

 �2
� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
bN

T

� �2

� 1

 !

ðT � t1Þ

t2 � t1

v

u

u

t � 1

8

<

:

9

=

;

: ð21Þ

Although we will use the full Eq. (20) to compute the theoretical gains to compare with the simulation results, it is useful

to examine this equation in several limits. First, one easily notes that if the simulation is so short that T < t1 then parareal fails

completely since it will converge at a rate of one chunk per cycle, thus needing K = N to converge. Indeed, the speed-up factor

(Eq. (11)) becomes,

HT<t1PA ðNÞ ¼
b

N þ b

� �

< 1: ð22Þ

Luckily, most actual applications will be in the opposite limit, T� t2 (since the interest is in doing very long simulations of

transport dynamics). Note that the imprint of having to resolve t1 one chunk at a time is still present in Eq. (11), (appears as

t1N/T), but it is not always deleterious for performance. In fact, its effect is small as long as N� Ns � T2/bt1, which separates

one regime in which the parareal cycle converges roughly in a constant number of cycles from another where the number of

cycles required increases with N. Clearly, the transition occurs when N gets large enough so that the resolution of t1 dom-

inates the convergence process. But luckily, note that this transition occurs at a rather large number of processors in practical

cases, since Ns / T2. Assuming bN/T� 1, b� Ns and T� t2, conditions that will be almost always satisfied in very long sim-

ulations, three asymptotic regimes can be identified:

HT�t2
PA ðNÞ �

b
T

 �

N; N � b;

bb
T
; b � N � Ns;

bT
t1

� �

1
N
; N � Ns:

8

>

>

<

>

>

:

ð23Þ

That is, the speed-up of the strong scaling increases first linearly with N as in the spatial parallelization ideal scaling, but note

that the slope is in general smaller than unity, b/T. The other aspect that is quite different from the spatial scaling laws is that,

for a wide range of processors (between b and Ns), the speed-up saturates at a roughly constant maximum value, �bb/T.

Thus, N � b sets the value of N at which the speed-up no longer improves as we predicted, but it may take a much larger

Table 1

Values of parameters defining k(N) model in physical units (see Eq. (17)) for the three different coarse solvers discussed in Section 5.

G kmax dtF/dtG b t1 t2 b

VODPK 72 4 16.3 290 ± 60 4120 ± 500 1320 ± 280

RK2 100 8 84.3 32 ± 32 3100 ± 1600 1340 ± 480

RK4 100 40 210.3 80 ± 80 2560 ± 1000 1280 ± 480
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number of processors to observe deterioration of the wallclock time. The reason is that, in this regime, the wallclock time of

the calculation is completely dominated by the number of times that the coarse solution with Gmust be applied serially! The

efficiency of the parallel part of the algorithm is of no importance at this stage. Finally, when the resolution of t1 at one chunk

at a time becomes the dominant process, the speed-up deteriorates as �1/N.

The analytical considerations compare well with actual numerical calculations of a strong scaling sequence, although the

asymptotic formulas tend to overestimate actual results. As an illustration we present two such numerical strong scaling

studies in Figs. 9 and 10. The first study corresponds to a BETA simulation with length T = 6400dtF, using as coarse solver

the 2nd-order RK previously mentioned (see Table 1). The aforementioned linear phase is observed up to N � 100. The max-

imum speed-up obtained in the simulations is slightly below 11 using N = 400 processors, and it should be noted that the

speed-up varies very little above N ’ 100. For this case, the theoretical values obtained are b � 84.29 and Ns � 800, again

in agreement with the simulations. However, note that the saturated speed-up predicted by the asymptotic formula Eq.

(23) is Hmax
PA � 17:6, which is larger than the one observed. The reason for the discrepancy must be sought in the fact that

the conditions to derive Eq. (23) are not satisfied in this example, since the simulation is too short ant T is only slightly larger

than t2 (see Table 1). In fact, when using the full model for ks(N), the agreement is much better, as shown in Fig. 9.

The second example corresponds to a BETA simulation with length T = 25,600dtF, that has been done using as coarse sol-

ver the 4th order RK previously mentioned (see Table 1). The maximum speed-up observed in this case is slightly above 5,

using N ’ 300 processors, but it should be noted that the speed-up value does not seem to be yet close to saturation. And

Fig. 9. Results of strong scaling study using as coarse solver G the 2nd-order Runge–Kutta solver described in Section 5. Model curve for gain corresponds to

values from Table 1.

Fig. 10. Results of strong scaling study using as coarse solver G the 4th-order Runge–Kutta solver described in Section 5. Model curve for gain corresponds

to values from Table 1.
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indeed, one finds from the asymptotic formulas that b � 210.3 and Ns � 3000 in this case, with a maximum speed-up of

roughly Hmax
PA � 10. We thus expect that we could do somewhat better with more processors in this second case.

5.4. Weak scaling

We now proceed to analyze the weak-scaling properties of the parareal scheme implemented in BETA. The figure-of-mer-

it here is, as previously described, the amount of work per processorWPA defined in Eq. (12). To obtain kw(N) it is sufficient to

assume that DT is fixed, and that the length of the simulation is T = N�DT. In this case, the process is trivial because all the

relevant quantities,

k1 ¼
t1
DT

; B ¼
b

DT
; ð24Þ

k2 ¼ 2
t2
DT

þ
b

DT
� 1

� �

t1
DT

� �

b

DT
þ 1

� ��

ð25Þ

are all constants that do not change when the number of processors. Thus, kw(N) is given exactly by Eq. (17).

As in the case of the strong scaling, asymptotic formulas can be derived to better interpret the results. Two regimes can be

distinguished depending on the value of T. First, we consider the case when N is not large enough to resolve t1,N < t1/DT.

Then, kW(N) = N, and the work-per-processor is:

WT<t1
PA ðNÞ ¼ N 1þ

N

b

� �

> N; N < t1=DT: ð26Þ

which is larger than N, signaling a complete failure of parallelism, as expected.

But again the limit of interest for applications is when N is large enough so that T� t2. Then, assuming T� t2 and b > DT,

the resulting work-per-processor becomes:

WT�t2 ðNÞ �
DT

b

� �

N þ
t1
DT

	 


1þ
N

b

� �

: ð27Þ

As in the strong limit case, the imprint of having to resolve t1 still appears here (the t1/DT term). But now, since DT is pre-

scribed, this term will be unimportant once N� Nw � (bt1)/(DT)
2. Thus, assuming also that b� Nw, one can easily distin-

guish three asymptotic regimes:

WT�t2
PA ðNÞ �

t1
DT
; t1

DT
� N � Nw;

DT
b

 �

N; Nw � N � b;

DT
bb

� �

N2; N � b:

8

>

>

<

>

>

:

ð28Þ

That is, the work-per-processor is first constant as in the ideal spatial parallelism case, although the value is usually greater

than unity. And it does not imply good parallelism: only that the fixed amount of work needed to resolve t1 dominates the

calculation. But once N > Nw, the work-per-processor begins to increase linearly, in contrast to the spatial case. The slope is

simply given by DT/b, as expected, since (DT/b)N gives roughly the number of parareal cycles needed to converge in this

Fig. 11. Weak scaling study for series of runs done using the 4th-order Runge–Kutta solver described in Section 5. Model curve corresponds to values from

Table 1.
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regime, and the number of times each processor has to repeat the serial work. Finally, for N� b, things deteriorate and the

work-per-processor increases quadratically with N.

To illustrate this behavior, we have also carried out a numerical weak scaling study using as coarse solver the 4th order RK

previously mentioned and with a prescribed chunk size DT = 80dtF. The work-per-processor as a function of the number of

processors is shown in Fig. 11. The first two regimes of Eq. (28) can be clearly seen in the figure. First, the work-per-processor

stays roughly constant at about �4 up to N � 40. Then, it increases close to linearly at least until N � 300–400 with a slope

�0.10 < 1, indicating that weak parallelism is different from the ideal one but not that bad. It is interesting to compare these

numbers with the predictions of the asymptotic formulas. For these runs, the asymptotic expressions just derived predict

that Nw � 17 and b � 210.3, consistent with the extent of the linear scaling in W seen in the numerical observations. The

slope predicted by the model would be �0.06. On the other hand, the constant value at the smallest N would be �1 or 2.

Again, as in the strong scaling case, these formulas tend to overestimate performance slightly. For completeness, we have

also included a figure (Fig. 12) with the speed-up of the calculations, although note that the length of the simulation is

increasing with N. The largest speed-up observed in this series is �9 using N = 88 processors, corresponding to the case cited

as example at the beginning of this section.

6. Conclusion

The two main conclusions of this work are that turbulent simulations can be parallelized in time using the parareal algo-

rithm, and that rather sizeable gains are achievable with this method. Indeed, we have shown speed-ups close to an order of

magnitude, and even these could be further increased by further optimization of the coarse solver. As we mentioned several

times, this is a remarkable result in view of the many existing concerns regarding the effect of the sensitivity to initial con-

ditions and exponential Lagrangian divergence on the convergence of the method. In fact, it has turned out that parareal may

probably work better here than in non-turbulent systems, since convergence only needs to be enforced on a single scalar

quantity (here, the total energy), and the whole spectrum (containing hundreds of thousands of degrees of freedom) also

converges even when unforced (at least, up to modes with an energy larger than the required convergence tolerance) due

to the existence of strong nonlinear couplings between any pair of modes. This is indeed a pretty remarkable result.

We have also applied the technique to the DTEM model including only the polarization non-linearity instead of the E � B

non-linearity which is to be discussed in a future paper. In that case, a direct parallel can be drawn between that model and

the quasi-geostrophic equation for neutral fluids. This makes it likely that the technique will be readily applicable to neutral

fluid turbulence as well.

In this work, we have also shown that it is possible to select a coarse solver that works for this type of problems based on

using a reduced grid size in k-space, accompanied by a coarser timestep and a simpler time-advance scheme. We have also

characterized the performance of the method using a model function for k(N,T), the number of parareal cycles required to

converge that, for the BETA simulations examined here, depends on four quantities: b, t1, t2 and b. Clearly, performance de-

pends more sensitively on b and b. The larger they are, the larger the parallel speed-up will be. A matter of investigation for

the future will be to investigate the origin and meaning of all these parameters. That is, to clarify whether their values are

imposed by the physics of the underlying turbulence or by the choice of the coarse solver and its relation with the fine one.

This knowledge would allow us to further optimize the parareal implementation inside BETA to obtain further gains. More

Fig. 12. Parallel gain for weak scaling series of runs using the 4th-order Runge–Kutta solver described in Section 5. Model curve plotted corresponds to

values from Table 1.
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importantly for other applications, we also plan to repeat the current exercise in other turbulent models, in order to see if the

model function found phenomenologically for k(N,T) has a universal character, or whether the shape used here is only par-

ticular to the DTEM case and the E � B-nonlinearity.

Other possibilities can and should also be, and in fact is being, explored in the future for further improvement in the gain

and efficiency. For instance, a better G (i.e., larger b and b) than the ones used here may be an option. It may be noted here,

that a faster G (i.e., larger b) will not necessarily mean a better one, unless the number of iterations required for convergence

remains small enough (i.e., larger b as well) so that the total time for simulation is reduced. A combination of both space and

time parallelization, thus leading to hybridization of the parallel scheme, should certainly be explored, since it may help to

better utilize already existing resources. Time parallelization adds an additional domain for parallelizing.

A small load imbalance was observed when running the part with the fine solver in the parareal algorithm, but it did not

appear to significantly affect the results. However, improving the algorithm in this regard may also be considered as an

important future work. The load imbalance probably appeared due to the particular solver (VODPK) used, which uses adap-

tive time stepping and will therefore depend on the dynamics in the individual time chunks. A solver with fixed time steps is

likely to improve this issue. But the price of having to solve all chunks with constant time steps might then be to use the

timestep (dt) which is needed to solve the chunk in which the fine structures appear (smallest dt), which is not necessarily

a good thing. So, a ‘‘fixed timestep solver” will avoid load imbalancing, but it is not likely to make it more efficient.

Also, it is worth noting that the current implementation of the parareal algorithm requires processors where convergence

has been observed to remain idle until the solution along the entire time domain is converged. Reuse of idle processors may

thus enhance the efficiency of the parareal scheme.
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