515 research outputs found

    Temporal and dimensional effects in evolutionary graph theory

    Full text link
    The spread in time of a mutation through a population is studied analytically and computationally in fully-connected networks and on spatial lattices. The time, t_*, for a favourable mutation to dominate scales with population size N as N^{(D+1)/D} in D-dimensional hypercubic lattices and as N ln N in fully-connected graphs. It is shown that the surface of the interface between mutants and non-mutants is crucial in predicting the dynamics of the system. Network topology has a significant effect on the equilibrium fitness of a simple population model incorporating multiple mutations and sexual reproduction. Includes supplementary information.Comment: 6 pages, 4 figures Replaced after final round of peer revie

    Pupil mobility, attainment and progress in secondary school

    Get PDF
    This paper is the second of two articles arising from a study of the association between pupil mobility and attainment in national tests and examinations in an inner London borough. The first article (Strand & Demie, 2006) examined the association of pupil mobility with attainment and progress during primary school. It concluded that pupil mobility had little impact on performance in national tests at age 11, once pupils’ prior attainment at age 7 and other pupil background factors such as age, sex, special educational needs, stage of fluency in English and socio-economic disadvantage were taken into account. The present article reports the results for secondary schools (age 11-16). The results indicate that pupil mobility continues to have a significant negative association with performance in public examinations at age 16, even after including statistical controls for prior attainment at age 11 and other pupil background factors. Possible reasons for the contrasting results across school phases are explored. The implications for policy and further research are discussed

    The statistical mechanics of a polygenic characterunder stabilizing selection, mutation and drift

    Full text link
    By exploiting an analogy between population genetics and statistical mechanics, we study the evolution of a polygenic trait under stabilizing selection, mutation, and genetic drift. This requires us to track only four macroscopic variables, instead of the distribution of all the allele frequencies that influence the trait. These macroscopic variables are the expectations of: the trait mean and its square, the genetic variance, and of a measure of heterozygosity, and are derived from a generating function that is in turn derived by maximizing an entropy measure. These four macroscopics are enough to accurately describe the dynamics of the trait mean and of its genetic variance (and in principle of any other quantity). Unlike previous approaches that were based on an infinite series of moments or cumulants, which had to be truncated arbitrarily, our calculations provide a well-defined approximation procedure. We apply the framework to abrupt and gradual changes in the optimum, as well as to changes in the strength of stabilizing selection. Our approximations are surprisingly accurate, even for systems with as few as 5 loci. We find that when the effects of drift are included, the expected genetic variance is hardly altered by directional selection, even though it fluctuates in any particular instance. We also find hysteresis, showing that even after averaging over the microscopic variables, the macroscopic trajectories retain a memory of the underlying genetic states.Comment: 35 pages, 8 figure

    Evolutionary dynamics of the cryptocurrency market

    Get PDF
    The cryptocurrency market surpassed the barrier of $100 billion market capitalization in June 2017, after months of steady growth. Despite its increasing relevance in the financial world, a comprehensive analysis of the whole system is still lacking, as most studies have focused exclusively on the behaviour of one (Bitcoin) or few cryptocurrencies. Here, we consider the history of the entire market and analyse the behaviour of 1469 cryptocurrencies introduced between April 2013 and May 2017. We reveal that, while new cryptocurrencies appear and disappear continuously and their market capitalization is increasing (super-)exponentially, several statistical properties of the market have been stable for years. These include the number of active cryptocurrencies, market share distribution and the turnover of cryptocurrencies. Adopting an ecological perspective, we show that the so-called neutral model of evolution is able to reproduce a number of key empirical observations, despite its simplicity and the assumption of no selective advantage of one cryptocurrency over another. Our results shed light on the properties of the cryptocurrency market and establish a first formal link between ecological modelling and the study of this growing system. We anticipate they will spark further research in this direction

    The edge of neutral evolution in social dilemmas

    Get PDF
    The functioning of animal as well as human societies fundamentally relies on cooperation. Yet, defection is often favorable for the selfish individual, and social dilemmas arise. Selection by individuals' fitness, usually the basic driving force of evolution, quickly eliminates cooperators. However, evolution is also governed by fluctuations that can be of greater importance than fitness differences, and can render evolution effectively neutral. Here, we investigate the effects of selection versus fluctuations in social dilemmas. By studying the mean extinction times of cooperators and defectors, a variable sensitive to fluctuations, we are able to identify and quantify an emerging 'edge of neutral evolution' that delineates regimes of neutral and Darwinian evolution. Our results reveal that cooperation is significantly maintained in the neutral regimes. In contrast, the classical predictions of evolutionary game theory, where defectors beat cooperators, are recovered in the Darwinian regimes. Our studies demonstrate that fluctuations can provide a surprisingly simple way to partly resolve social dilemmas. Our methods are generally applicable to estimate the role of random drift in evolutionary dynamics.Comment: 17 pages, 4 figure

    Rank Statistics in Biological Evolution

    Full text link
    We present a statistical analysis of biological evolution processes. Specifically, we study the stochastic replication-mutation-death model where the population of a species may grow or shrink by birth or death, respectively, and additionally, mutations lead to the creation of new species. We rank the various species by the chronological order by which they originate. The average population N_k of the kth species decays algebraically with rank, N_k ~ M^{mu} k^{-mu}, where M is the average total population. The characteristic exponent mu=(alpha-gamma)/(alpha+beta-gamma)$ depends on alpha, beta, and gamma, the replication, mutation, and death rates. Furthermore, the average population P_k of all descendants of the kth species has a universal algebraic behavior, P_k ~ M/k.Comment: 4 pages, 3 figure

    Adaptive walks on time-dependent fitness landscapes

    Full text link
    The idea of adaptive walks on fitness landscapes as a means of studying evolutionary processes on large time scales is extended to fitness landscapes that are slowly changing over time. The influence of ruggedness and of the amount of static fitness contributions are investigated for model landscapes derived from Kauffman's NKNK landscapes. Depending on the amount of static fitness contributions in the landscape, the evolutionary dynamics can be divided into a percolating and a non-percolating phase. In the percolating phase, the walker performs a random walk over the regions of the landscape with high fitness.Comment: 7 pages, 6 eps-figures, RevTeX, submitted to Phys. Rev.

    Probabilistic Clustering of Time-Evolving Distance Data

    Full text link
    We present a novel probabilistic clustering model for objects that are represented via pairwise distances and observed at different time points. The proposed method utilizes the information given by adjacent time points to find the underlying cluster structure and obtain a smooth cluster evolution. This approach allows the number of objects and clusters to differ at every time point, and no identification on the identities of the objects is needed. Further, the model does not require the number of clusters being specified in advance -- they are instead determined automatically using a Dirichlet process prior. We validate our model on synthetic data showing that the proposed method is more accurate than state-of-the-art clustering methods. Finally, we use our dynamic clustering model to analyze and illustrate the evolution of brain cancer patients over time

    Dynamics on expanding spaces: modeling the emergence of novelties

    Full text link
    Novelties are part of our daily lives. We constantly adopt new technologies, conceive new ideas, meet new people, experiment with new situations. Occasionally, we as individuals, in a complicated cognitive and sometimes fortuitous process, come up with something that is not only new to us, but to our entire society so that what is a personal novelty can turn into an innovation at a global level. Innovations occur throughout social, biological and technological systems and, though we perceive them as a very natural ingredient of our human experience, little is known about the processes determining their emergence. Still the statistical occurrence of innovations shows striking regularities that represent a starting point to get a deeper insight in the whole phenomenology. This paper represents a small step in that direction, focusing on reviewing the scientific attempts to effectively model the emergence of the new and its regularities, with an emphasis on more recent contributions: from the plain Simon's model tracing back to the 1950s, to the newest model of Polya's urn with triggering of one novelty by another. What seems to be key in the successful modelling schemes proposed so far is the idea of looking at evolution as a path in a complex space, physical, conceptual, biological, technological, whose structure and topology get continuously reshaped and expanded by the occurrence of the new. Mathematically it is very interesting to look at the consequences of the interplay between the "actual" and the "possible" and this is the aim of this short review.Comment: 25 pages, 10 figure
    • 

    corecore