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Chapter 13

Gene-Category Analysis

Sebastian Bauer

Abstract

Gene-category analysis is one important knowledge integration approach in biomedical sciences that com-
bines knowledge bases such as Gene Ontology with lists of genes or their products, which are often the 
result of high-throughput experiments, gained from either wet-lab or synthetic experiments. In this chapter, 
we will motivate this class of analyses and describe an often used variant that is based on Fisher’s exact test. 
We show that this approach has some problems in the context of Gene Ontology of which users should be 
aware. We then describe some more recent algorithms that try to address some of the shortcomings of the 
standard approach.

Key words Enrichment, Overrepresentation, Knowledge integration, Fisher’s exact text, Gene prop-
agation problem

1  �Introduction

The result of biological high-throughput methods is often a list 
consisting of several hundreds of biological entities, which are in 
case of gene expression profiling experiments identifiers of genes or 
their products. As a biological entity may have different context-
specific functions, it is difficult for humans to interpret the out-
come of an experiment on the basis of such a list. Computational 
approaches to access the biological knowledge about features of 
biological entities therefore play an important part in the successful 
realization of research based on high-throughput experiments. A 
practical way to address the question of what is going on? is to per-
form a gene-category analysis, i.e., to ask whether these responder 
genes share some biological features that distinguish them among 
the set of all genes tested in the experiment.

First of all, gene-category analysis involves a list of gene catego-
ries, in which genes with similar features are grouped together. The 
exact definition of the attribute similar depends on the provider 
of the categories. For instance, if Gene Ontology is the choice, 
then genes usually are grouped according to the terms, to which 
they are annotated. Another scheme is the KEGG database  [1], 
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in which genes are grouped according to the pathways in which 
they are involved. The second ingredient is a statistical method for 
identifying the really interesting categories.

In this chapter, we introduce some commonly used approaches 
for gene-category analysis. Throughout the remainder of this chap-
ter, we refer to the set of items, which a study could possibly select, 
as the population set. We denote this set by the uppercase letter M 
while the size of the set, or its cardinality, is identified by its lower-
case variant m. If, for example, a microarray experiment is con-
ducted, the population set will comprise all genes whose expression 
can be measured with the microarray chip. The actual outcome of 
the study is referred to as the study set. It is denoted by N and has the 
cardinality n. In the microarray scenario the study set could consist 
of all genes that were detected to be differentially expressed.

2  �Fisher’s Exact Test

One approach for gene-category analysis is to cast the problem 
as a statistical test. For this purpose, the study set is assumed to 
be a random sample that is obtained by drawing n items without 
replacement from the population. The population is dichotomic 
as the items can be characterized according to whether they are 
annotated to term t or not. In particular, the set Mt with cardi-
nality mt constitutes all items that are annotated to t. Denote 
the random variable that describes the number of items of the 
study set that are annotated to t in this random sample as Xt. 
The  hypergeometric distribution applies to Xt, and the proba-
bly of observing exactly k items annotated to t, i.e., P(Xt = k) is 
specified by

(
mt mt

k

)(
m −

)

(
m

n

) .

# of ways of choosing the remaining
n − k items that are not annotated to t

# of ways of choosing k items among all
items annotated to t

# of ways of choosing n items among m

Xt ∼ h(k|m; mt; n) := P (Xt = k) =
n − k

   

Furthermore, the set of items that are annotated to t and mem-
bers of the study set are denoted by Nt with cardinality nt. The 
objective is to assess whether the study set is enriched for term t, 
i.e., whether the observed nt is higher than one would expect. This 
forms the alternative hypothesis H1 of the statistical test. The null 
hypothesis H0 in this case is that there is no positive association 
between the observed occurrence of the items in the study set and 
the annotations of the items to the term t. Thus, the proportion of 
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items annotated to term t is approximatively identical for the study 
set and the population set. In order to be able to reject H0 in sup-
port of H1 we conduct a one-tailed test, in which we ask for the 
probability of the event that we see nt or more annotated items 
given that H0 is true: 
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If the probability obtained by this equation1 is below a certain 
significance level α, e.g., α < 0. 05, we reject H0 in favor of H1. In 
that case, the tested term t is regarded as an interesting term that 
contributes to the characterization of the study set.

Example 2.1.  Suppose that we are given a population of m = 18 
genes, of which mt = 4 genes are annotated to a term t. The outcome of 
an experiment yields a study set of 5 differentially expressed genes. A 
total of nt = 3 genes from the genes of the study set are annotated to t. 
Figure 1 illustrates the participating sets and how they are related to 
one another in that particular situation.

In order to check whether term t can be used to characterize the 
experiment, we ask whether term t is overrepresented in the study set. 
The application of Eq. 1 yields a p-value for t 
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Thus, the null hypothesis is rejected and the term is said to be overrep-
resented among the differentially expressed genes and is thus likely to 
reflect an association between the term and the experiment.

3  �Multiple Testing Problem

In hypothesis-generating studies it is a priori not clear, which terms 
should be tested. Therefore, the procedure is not only conducted 
using a single term but also applied to many, often all terms that 
Gene Ontology provides and to which at least one gene is anno-
tated. The result of the entire analysis is then a list of terms that 
were found to be significant. This, however, implies that the num-
ber of false-positive terms is high.

1
 The superscript tft in pt

tft stands for term-for-term. It allows to distinguish 
this p-value with other measures that are described later.
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To see this, suppose that there are T tests to be performed. We 
assume that the null hypothesis is true for all of those tests. Before 
its actual determination, any p-value can be considered as a random 
variable as well, for which P(p ≤ α | H0) ≤ α holds [2]. This implies 
that it can be expected that α × T tests lead to the rejection of a null 
hypothesis although it is true.

Example 3.1.  If there are 10,000 null hypotheses that are true and 
all of them are tested, then we expect that we reject the null hypotheses 
for about 500 tests. Obviously, describing the result of experiment with 
500 random terms is not useful.

Therefore, the result of a term enrichment analysis shall be 
further subjected to a multiple test correction. The most simple is 
the Bonferroni correction [3]. Here, each p-value is simply multi-
plied by the number of tests saturated at a value of 1.0. Bonferroni 
controls the so-called family-wise error rate, which is the 
probability of making one or more false discoveries. It is a very 
conservative approach because it handles all p-values as independent. 
But as we see later, this is not a typical case of gene-category analysis, 
so this approach often goes along with a reduced statistical power. 
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Fig. 1 Sets and their relations in the standard approach. In this example the 
population consists of m = 18 genes and n = 5 of them are part of the study set. 
Exactly mt = 4 genes of the population are annotated to term t. This term has 
nt = 3 genes in common with the study set. The null hypothesis of the standard 
approach (term-for-term) is that there is no association between the number of 
genes that are in the study set and the number of genes that are annotated to the 
term t, i.e., the study set is a random sample of the population set. We therefore 
would expect that it contains the same proportion of annotated terms as the 
population set does. The probability under the null hypothesis of the event to see 
at least nt genes can be assessed via Eq. 1.
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In contrast, the Westfall–Young [4] procedure also takes depen-
dencies into account. This correction, however, is computation-
ally more costly as it is based on resampling schemes. In particular 
in the gene category setting, this scheme involves randomly sam-
pling study sets of the same size as the original study set from the 
population. Each set is subjected to the test procedure yielding a 
set of p-values for each term, also referred to as the null distribu-
tion of that term. By relating the original p-value to the null dis-
tribution, an adjusted p-value is derived. There are other types of 
multiple test corrections that do not aim to control the family-
wise error rate. For instance, the Benjamini–Hochberg  [5] 
approach controls the expected false discovery rate (FDR), which 
is the proportion of false discoveries among all rejected null 
hypotheses. This has a positive effect on the statistical power at 
the expense of having less strict control over false discoveries. 
Controlling the FDR is considered by the American Physiological 
Society as “the best practical solution to the problem of multiple 
comparisons” [6].

Note that less conservative corrections usually yield a higher 
amount of significant terms, which may be not desirable after all. 
In the following section, we further explore the structural origin of 
the correlations of the p-values in the setting of enrichment tests 
for ontology terms.

4  �Gene Propagation

While the application of multiple testing correction aims to reduce 
the number of false-positives in a rather universal manner, one can 
also try to tackle the problem at a more basic level. The root of the 
problem is that if a term shares genes with a second term, and one 
of the terms is overrepresented, then it is not too surprising that 
the other term is also detected as overrepresented. 

That the gene sharing of terms of an ontology is more a rule 
than an exception can be deduced from the principles of how 
ontologies are designed. Within an ontology, terms describe con-
cepts of a domain that can be related to other terms by various 
types of relationships. The most prominent relationship thereby is 
the is a relationship, which effectively propagates the membership 
of the subject (source) of the relationship to the object (destina-
tion). That means, if a term T1 is related to a term T2 by the is a 
relationship, and a gene is annotated to T1, then it is implicitly 
annotated also to term T2 (see Chap. 1 [7]). In the context of GO 
overrepresentation analysis, we refer to this as the gene propagation 
problem.2

2
 Note that in addition to this gene sharing that is due to the graph structure 

of the ontology, also unrelated terms can be annotated to similar sets of genes, 
for instance, if the same gene plays a role in distinct biological processes.
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Example 4.1 (Continuation of Example 2.1).  There is another 
term s, which is the only parent of t. For s we know that ms = 6 and 
ns = 4. Figure 2 shows this structure graphically. There, it is also indi-
cated that the p-values of terms t and s are 0.044 and 0.022, respec-
tively, which means that both terms are considered as significant for α 
< 0.05 if no multiple test correction is performed. Obviously, both 
terms share the majority of items that are also part of the study set. 
One can argue that the fact that term t is identified as overrepre-
sented is a consequence of the fact that s is overrepresented.

A simple synthetic experiment, in which a term will be artifi-
cially overrepresented, demonstrates the extent of the problem. 
Let’s select the term localization for this purpose. We create a study 
set that consists of all genes that are annotated to that term with 
probability 0.8. This corresponds to false-negative rate β = 0. 2. 
Furthermore, to introduce some background noise, each gene that 
is not annotated to the term is added to that study set with a false-
positive rate of α = 0. 1. In this example, the procedure yields a set 
of 1542 genes. For each considered term, this set is subjected to 
Fisher’s exact test resulting in a list of 4549 p-values3. Finally, the 
p-values are adjusted using the Bonferroni correction.

The analysis correctly identifies the term localization as signifi-
cantly enriched. In addition to that, it identifies 275 other terms as 
significantly enriched. In particular, 6 of the 6 children, to which at 
least one gene is annotated, are significant. Among the 681 possi-
ble descendants of localization, we find 172 significant ones. These 
figures suggest that descendants come up only because their anno-
tations converge in the term localization. Although, in the statistical 
sense, this is a correct result, it is not desirable to use that huge 
amount of terms to characterize the study set, especially as it is suf-
ficient to use the term localization  for this purpose, and what is 

3
 This corresponds to the number of terms from the biological process subon-

tology that are annotated by at least one gene.

t s r

is a

is a parent of is a parent of

is a

mt = 4
nt = 3
pt = 0.044

ms = 6
ns = 4
ps = 0.022

m = 18
n = 5

Fig. 2 Extended example with three terms. This depicts the situation of 
Example 2.1 with two more terms. Term t is a s and therefore s is a parent of t. 
Term r is the root of the ontology. It is the only parent of s. As indicated in the last 
row, the procedure based on Fisher’s exact test determines a p-value below 0.05 
for both terms. Thus, both terms will be considered as a meaningful summary of 
the underlying experiment.
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more, the result suggests a specificity that we did not put in there. 
It makes sense to consider each of the additional 275 significant 
terms as a false-positive and in the next sections we will briefly 
describe methods that attempt to reduce that number.

5  �Parent–Child Approach

The parent–child approach [8] is still based on Fisher’s exact test, 
but the probability of t being overrepresented is conditioned on 
properties of the parental terms. In the following, let pa(t) be the 
set of parents of term t, which are, for instance, those terms, to 
which t is connected by a is a relation. In order to introduce the 
principal ideas of the parent–child approaches, we initially assume 
that there is only a single parent of t, i.e., pa(t) = {s}.

Instead of drawing the items from the population M, items will 
be drawn just from the set of items that are annotated to the parent 
of t, which is written as Mpa(t) and whose size is mpa(t). This consid-
eration yields the following equation: 
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The right part of Fig. 3 shows the setting of the parent–child 
approaches. Effectively, in the parent–child approaches, we change 
the population that underlies Fisher’s exact test to the items anno-
tated to the parents. Obviously, this also alters the involved sets for 
the study set. As previously, we ask for the probability of seeing the 
observed number of items or a more extreme event: 
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Example 5.1 (Continuation of Example 4.1).  As shown in Fig. 2, 
the parent of term s is the root r of the ontology, which is always anno-
tated to all genes of the population. Therefore, the p-value for s is the 
same for previous approach and for parent–child approach, i.e., 
p ps s
pc = = 0 22.  However, for term t, Eq. 3 yields 
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 Thus, the null hypothesis for term t is not rejected, which is in contrast 
to the result of the previous approach. Given the initial observations 
that the study set is already skewed to the parent s of t makes the enrich-
ment of term t less surprising, which the parent–child approaches 
reflect by returning a higher p-value.

If term t has more than one parent term, then it is not imme-
diately apparent how to calculate mpa(t) and the observation npa(t) 
in Eqs. 2 and 3. In Grossmann et al. [8] we examined two variants 
in detail, the union and the intersection of genes that are annotated 
to each of the parents.

6  �Topology-Based Algorithms

Alexa et al. devised another method to address the gene propaga-
tion problem. The authors propose calculating a score for the term 
that depends on the relevance of the children of the term [9]. They 
argue that capturing the meaning in that way is biologically more 
interesting as the definitions of children are more specific. Following 
this argumentation, the authors formulated two concrete algo-
rithms that try to provide a more suitable, i.e., less correlated, dis-
tribution of terms that get flagged as important. While the first 
approach which they called the elim-algorithm strictly favors sig-
nificance of the most specific levels of the GO graph, their second 
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Fig. 3 Sets and their relations in the parent–child approaches. Part (a) depicts the model of the term-for-term 
approach as it was shown in Fig. 1. This is contrasted in part (b) with the model of the parent–child approaches. 
In this approach, we shift the focus to a smaller set of genes, for instance to the genes that are annotated to 
at least one of the parents of term t. In this particular situation it is the set whose size is mpa(t) = 6 with pa(t) = {s} 
following Example 4.1. Genes that are not part of this set do not contribute to the calculation. This has an effect 
on the involved proportions, and thus on the outcome of the test. Effectively, for each term, we alter the popula-
tion of the association test. Eq. 2 quantifies the probability.
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algorithm called weight relaxes this restriction such that terms that 
are most significant are favored.

As before, we understand the top of the graph as the root of 
the ontology, while the bottom of the graph consists of the most 
specific terms. The idea of the elim algorithm is to traverse the 
graph representation of the ontology in bottom-up fashion, which, 
for instance, can be accomplished by utilizing the backtrack phase 
of a depth-first search (DFS) [10].

The elim procedure awaits a term t as a variable parameter and 
returns a set of flagged genes. On its initial invocation, it begins 
with the root of the ontology. For the current term t, we apply 
Fisher’s exact test in order to relate the genes of the study set to the 
genes of the population with respect to the genes that are anno-
tated to term t. As in the parent–child approaches, not all genes of 
the study set contribute to the calculation. For elim, a set of previ-
ously determined genes is subtracted from the set of the study set 
before the calculation for pt is carried out. This set is constructed 
by recursively applying the elim procedure for all children of t and 
taking the union of the result. If pt is significant, we add all genes 
of t to the set of flagged genes. Finally, we return the set of flagged 
genes to the caller. Note that when the DFS reaches a leaf node of 
the ontology, Fisher’s exact test is performed exactly as in the stan-
dard approach.

Obviously, the complexity of the algorithm is the same as the 
complexity of a depth-search algorithm if we assume that the num-
ber of genes that are annotated to a term is constant. Note in the 
original publication of the elim, the algorithm was based on an 
iteration over the levels of the GO DAG, which partitions the 
nodes according to their longest distance to the root. The algo-
rithm as outlined here yields an equivalent result without the need 
to explicitly keep track of the DAG levels.

Example 6.1 (Continuation of Example 5.1).  The p-value of 
term t matches the p-value of term t of the standard approach, i.e., 
p pt t
elim tft= = 0 044. . As this is a significant result, at least, if correc-

tion for multiple testing is omitted, all four genes that are annotated 
to t are removed in the consideration of upper terms, i.e., we assume 
that those four genes are not annotated to them. This leaves two genes 
for the computation of term s, of which only one is member of the study 
set (Fig. 3b). With ms = 2, ns = 1, and the rest as before, Eq. 1 yields 
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Hence, the elim method doesn’t report term s as important.
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An equivalent characterization of the elim method is the fol-
lowing: If a term t is identified as significant, all genes that are 
annotated to t are no longer considered in the computation of the 
relevance of the ancestors of t. As it was discussed in Example 2.1 
at page  2.1 and as can also be seen in Fig. 2, the term-for-term 
approach assigns term s a lower p-value than it does for term t. One 
may conclude that it is more appropriate to take term s than to take 
term t in order to provide a compact description of the study set. 
However, in Example 13.6.1 we saw that the application of the 
elim method results in usage of term t to describe the outcome, 
which is contrary to that conclusion.

This concern is addressed by weight method. It compares sig-
nificance scores of a family terms (a parent and its child) to identify 
the locally most significant terms and down-weight genes in less 
significant neighbors. This effectively decorrelates the p-values of 
the related terms such that their differences are enforced while the 
existence of the most significant terms is still maintained.

7  �Model-Based Approaches

The previously described procedures that address gene propagation 
problem have in common that they successively test overrepresen-
tation for each of the terms. They all use some form of the Fisher’s 
exact test. In contrast to this, model-based gene set analysis 
(MGSA) models the gene response in a genome-wide experiment 
as the result of an activation of a number of terms [11].4

The approach is based on a model that can nicely be expressed 
using a Bayesian network with three layers of Boolean random 
variables. The term layer consists of m Boolean nodes correspond-
ing to m terms of the ontology. A term can be active or inactive. 
A parameter p, usually much less than 0.5, represents the prior 
probability of a term being active. The hidden layer contains n 
Boolean nodes representing the n hidden state of the genes. The 
hidden state of a gene is a consequence of the states the terms to 
which the gene is annotated: The gene is on if and only if at least 
one term to which the gene is annotated is active, otherwise it is 
off. The third layer, the observed layer, contains Boolean nodes 
reflecting the experimentally observed state of all genes. For 
instance, in the setting of a microarray experiment, the on state 
would correspond to differential expression, and the off state 
would correspond to a lack of differential expression of a gene. The 
observed gene state depends on the corresponding hidden gene 
state in a one-to-one fashion with a false-positive (α) and false-
negative rates (β) that is identical and independent for all genes. A 
simple instance of the model is depicted in Fig. 4.

4
 We use the word term here because we primarily work with GO, but the 

method can be applied to any other structured or unstructured vocabulary.

Sebastian Bauer



185

The model describes how the activity of terms leads to the 
observed stats of genes. This, however, is not the direction we are 
interested in. We are interested in the set of terms that explain the 
experimentally obtained data best, and the mathematical tool 
that can be applied to and such sets is probabilistic inference. The 
optimization problem that finds the term state configuration that 
explains the observed gene pattern best is NP-hard  [12]. 
However, it is easily possible to find nearby solutions by sampling 
from the state space. This procedure additionally allows to deter-
mine the so-called marginal probability for each term, which is a 
measure how good the particular term will explain the observed 
genes with respect to all the other terms. The value ranges 
between 0 and 1 with 0 being the lowest possible support and 1 
being the best possible support for a term. As all terms compete 
with one another, the inference takes dependencies both due to 
gene propagation and due to similarity of annotations into 
account. For example, if two unrelated terms are annotated to 
the same set of genes that matches the observation, the marginal 
probability for both terms will be 0.5. Consequently, it is advis-
able to run MGSA for each of the subontologies separately as 
they are designed to express orthogonal features.

T1

T2

T3

T4

H1

H2

H3 O3

O2

O1

Fig. 4 The graphical representation of an MGSA network. An example structure for 
four terms and three genes with a possible realizations is displayed. Terms (Ti ) 
that constitute the first layer can be either active (light ) or inactive (dark ). Terms 
that are active enable the hidden state (Hj ) of all genes annotated to them, the 
other genes remaining off. The observed states (Oj ) of the genes are noisy obser-
vations of their true hidden state. In this example, the observed states for gene 1 
and 3 match the hidden state while for some unknown reasons the measurement 
of gene 2 doesn’t correspond to the hidden state. It’s a false-negative.
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8  �Gene Set Enrichment Analysis

In addition to approaches that take a fixed subset of the population 
as input, procedures that take the measurements of the genes into 
account are also widely in use. This is attractive as it frees the inves-
tigator from the need to define a sometimes arbitrary cutoff that is 
used to construct the study set.

A first version of the so-called Gene Set Enrichment Analysis 
(GSEA) that received much attention of the scientific community 
was published by Mootha et al. [13]. In this approach, genes are 
ranked according to an interesting feature (e.g., the difference of 
the mean of their expression values for two experimental condi-
tions). The null hypothesis is that the genes of the interesting set 
(e.g., genes annotated to a term) have no association with that list, 
in which case they would be randomly ordered. The alternative 
hypothesis is that the genes of the interesting set have an associa-
tion. For instance, if the genes of the set are grouped together on 
the top of the list, we would tend to believe that there is such an 
association.

To capture the association via statistical means, the authors 
proposed a normalized Kolmogorov–Smirnov (KS) test statistic. 
Let ri ∈ M be the gene of the population M that has rank i in the 
gene list that is sorted according to the interesting gene feature. 
Using the previously established notation, i.e., that m is the total 
number of genes and Nt is the set of cardinality nt that contains 
only genes that are annotated to t, the score is defined as: 
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Thus, the score is the maximum of a running sum that is increased 
if the gene is annotated to t and decreased if the gene is not anno-
tated to t. In order to check if the obtained score is significant, the 
calculation is repeated for k randomly chosen sets Nt

1, …, Ntk, 
which all are subsets of M with size nt. The p-value for a term t is 
calculated as 
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The GSEA method went a slight revision Subramanian et  al. 
[14], where ad-hoc modifications are implemented that are sup-
posed to countervail the well-known lack of sensitivity of the KS 
test [15, 16].
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9  �Software

Gene-category analysis is a very prominent use case of Gene 
Ontology. It shouldn’t come as a surprise that users can choose 
among a variety of software implementations that will perform this 
sort of analysis. For instance, current version of the web site of 
Gene Ontology Consortium (geneontology.org) provides access 
to the method of the basic Fisher’s exact test directly on the front 
page. There are also graphical tools that integrate into existing 
frameworks such as BiNGO [17], standalone graphical clients such 
as Ontologizer5  [18] or packages for Bioconductor such as topGo 
[19], mgsa [20], or gCMAP [21], just to name a few of them.

10  �Exercises

	1.	 Repeat the random experiment outlined in the text that was 
used to show the influence of the gene propagation. When 
doing this in R/Bioconductor, it is advisable to use the GO.db 
and org.Sc.sgd.db packages that provide the structure and the 
annotations. The calculation involving the hypergeometric dis-
tribution can be expressed directly in R using dhyper and phy-
per. Now repeat this experiment with other approaches based 
on study sets that were outlined in this chapter and compare 
the results. For the topology-based algorithms the topGo pack-
age can be used and for the model-based approach the mgsa 
package is well suited.

	2.	 Apply the approach now to an arbitrary example or on real 
world data. Compare the results.

Funding Open Access charges were funded by the University 
College London Library, the Swiss Institute of Bioinformatics, the 
Agassiz Foundation, and the Foundation for the University of 
Lausanne.

Open Access This chapter is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits use, 
duplication, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, a link is provided to the Creative 
Commons license and any changes made are indicated.

The images or other third party material in this chapter are 
included in the work’s Creative Commons license, unless indicated 
otherwise in the credit line; if such material is not included in the 

5
 http://ontologizer.de 

Gene-Category Analysis

geneontology.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


188

	 1.	Kanehisa M, Goto S (2000) KEGG: Kyoto 
encyclopedia of genes and genomes. Nucleic 
Acids Res 28(1):27–30

	 2.	Ewens WJ, Grant GR (2005) Statistical meth-
ods in bioinformatics: an introduction, 2nd 
edn. Springer, Berlin. ISBN 978-0387400822

	 3.	Abdi H (2007) Bonferroni and Sidak correc-
tions for multiple comparisons. Sage, Thousand 
Oaks, CA

	 4.	Westfall PH, Young SS (1993) Resampling-
based multiple testing: examples and methods 
for P-value adjustment. Wiley, London. ISBN 
978-0471557616

	 5.	Benjamini Y, Hochberg Y (1995) Controlling 
the false discovery rate: a practical and power-
ful approach to multiple testing. J R Stat Soc 
Ser B 57:289–300

	 6.	Curran-Everett D, Benos DJ (2004) Guidelines 
for reporting statistics in journals published by 
the American Physiological Society. Adv 
Physiol Educ 28:85–87

	 7.	Hastings J (2016) Primer on ontologies. In: 
Dessimoz C, Škunca N (eds) The gene ontol-
ogy handbook. Methods in molecular biology, 
vol 1446. Humana Press. Chapter 1

	 8.	Grossmann S, Bauer S, Robinson PN, Vingron 
M (2007) Improved detection of overrepresenta-
tion of Gene-Ontology annotations with parent 
child analysis. Bioinformatics 23:3024–3031

	 9.	Alexa A, Rahnenführer J, Lengauer T (2006) 
Improved scoring of functional groups from 
gene expression data by decorrelating GO 
graph structure. Bioinformatics 22(13):1600–
1607. doi:10.1093/bioinformatics/btl140

	10.	Cormen TH, Leiserson CE, Rivest RL, Stein C 
(2001) Introduction to algorithms, 2nd edn. MIT 
Press, Cambridge, MA. ISBN 978-0262531962

	11.	Bauer S, Gagneur J, Robinson PN (2010) 
GOing Bayesian: model-based gene set analysis 
of genome-scale data. Nucleic Acids Res 
38(11):3523–3532

	12.	Bauer S (2012) Algorithms for knowledge 
integration in biomedical sciences. PhD thesis

	13.	Mootha VK, Lindgren CM, Eriksson K-F, 
Subramanian A, Sihag S, Lehar J, Puigserver 
P, Carlsson E, Ridderstråle M, Laurila E, 
Houstis N, Daly MJ, Patterson N, Mesirov JP, 
Golub TR, Tamayo P, Spiegelman B, Lander 
ES, Hirschhorn JN, Altshuler D, Groop LC 
(2003) PGC-1α-responsive genes involved in 
oxidative phosphorylation are coordinately 
downregulated in human diabetes. Nat Genet 
34(3):267–273. doi:10.1038/ng1180

	14.	Subramanian A, Tamayo P, Mootha VK, 
Mukherjee S, Ebert BL, Gillette MA, Paulovich 
A, Pomeroy SL, Golub TR, Lander ES, 
Mesirov JP (2005) Gene set enrichment analy-
sis: a knowledge-based approach for interpret-
ing genome-wide expression profiles. Proc 
Natl Acad Sci USA 102(43):15545–15550. 
doi:10.1073/pnas.0506580102

	15.	Mason DM, Schuenemeyer JH (1983) A mod-
ified Kolmogorov-Smirnov test sensitive to tail 
alternatives. Ann Stat 11(3):933–946

	16.	Irizarry RA, Wang C, Zhou Y, Speed TP 
(2009) Gene set enrichment analysis made 
simple. Stat Methods Med Res 18(6):565–575. 
ISSN 1477-0334

	17.	Maere S, Heymans K, Kuiper M (2005) Bingo: 
a cytoscape plugin to assess overrepresentation 
of gene ontology categories in biological net-
works. Bioinformatics 21:3448–3449

	18.	Bauer S, Grossmann S, Vingron M, Robinson 
PN (2008) Ontologizer 2.0–a multifunctional 
tool for go term enrichment analysis and data 
exploration. Bioinformatics 24(14):1650–
1651. doi:10.1093/bioinformatics/btn250

	19.	Alexa A, Rahnenführer J  (2010) topGO: 
enrichment analysis for Gene Ontology. R 
package version 2.22.0

	20.	Bauer S, Robinson NP, Gagneur J  (2011) 
Model-based Gene Set Analysis for 
Bioconductor. Bioinformatics 27

	21.	Sandmann T, Kummerfeld SK, Gentleman R, 
Bourgon R (2014) gcmap: user-friendly con-
nectivity mapping with r. Bioinformatics 
30(1):127–128

work’s Creative Commons license and the respective action is not 
permitted by statutory regulation, users will need to obtain per-
mission from the license holder to duplicate, adapt or reproduce 
the material.

References

Sebastian Bauer

10.1093/bioinformatics/btl140
10.1038/ng1180
10.1073/pnas.0506580102
10.1093/bioinformatics/btn250

	Chapter 13: Gene-Category Analysis
	1 Introduction
	2 Fisher’s Exact Test
	3 Multiple Testing Problem
	4 Gene Propagation
	5 Parent–Child Approach
	6 Topology-Based Algorithms
	7 Model-Based Approaches
	8 Gene Set Enrichment Analysis
	9 Software
	10 Exercises
	References


