819 research outputs found

    A framework for modelling and analysing conspecific brood parasitism

    Get PDF
    Recently several papers that model parasitic egg-laying by birds in the nests of others of their own species have been published. Whilst these papers are concerned with answering different questions, they approach the problem in a similar way and have a lot of common features. In this paper a framework is developed which unifies these models, in the sense that they all become special cases of a more general model. This is useful for two main reasons; firstly in order to aid clarity, in that the assumptions and conclusions of each of the models are easier to compare. Secondly it provides a base for further similar models to start from. The basic assumptions for this framework are outlined and a method for finding the ESSs of such models is introduced. Some mathematical results for the general, and more specific, models are considered and their implications discussed. In addition we explore the biological consequences of the results that we have obtained and suggest possible questions which could be investigated using models within or very closely related to our framework

    Combining motility and bioluminescent signalling aids mate finding in deep-sea fish: a simulation study

    Get PDF
    We present a model to estimate the mean time required for mate finding among deep-sea fish as a function of motility and the extent of bioluminescent signalling. This model differs from those of previous works in 3 important ways by including (1) sex differences in motility, (2) a maximum detection range of bioluminescent signals derived from a recently published mechanistic model based on physical principles and the physiology of vision, and (3) a novel consideration of the likelihood of individuals passing within detection range only in the interval between flashes and hence, failing to detect the signaller. We argue that the flash rates required for effective detection are low, with rates of less than 1 per minute being entirely plausible, and that predation pressure may further encourage low flash rates. Further, even at high flash frequencies, the energetic cost of bioluminescent signalling is argued to be a trivial fraction of resting metabolic rates. Using empirically derived estimates for parameter values, we estimate that a female will be detected and reached by a male within 2 to 4 h of beginning to signal. Hence, we argue that mate finding may not seriously restrict reproductive success in species that can exploit this signalling system. We further argue that where male motility allows bioluminescent signalling, this may have some advantages over chemical-based signalling. Bioluminescent signalling may, therefore, be more important to mate finding in the deep sea (relative to chemical signals) than some previous works have suggested

    An evolutionarily stable joining policy for group foragers

    Get PDF
    For foragers that exploit patchily distributed resources that are challenging to locate, detecting discoveries made by others with a view to joining them and sharing the patch may often be an attractive tactic, and such behavior has been observed across many taxa. If, as will commonly be true, the time taken to join another individual on a patch increases with the distance to that patch, then we would expect foragers to be selective in accepting joining opportunities: preferentially joining nearby discoveries. If competition occurs on patches, then the profitability of joining (and of not joining) will be influenced by the strategies adopted by others. Here we present a series of models designed to illuminate the evolutionarily stable joining strategy. We confirm rigorously the previous suggestion that there should be a critical joining distance, with all joining opportunities within that distance being accepted and all others being declined. Further, we predict that this distance should be unaffected by the total availability of food in the environment, but should increase with decreasing density of other foragers, increasing speed of movement towards joining opportunities, increased difficulty in finding undiscovered food patches, and decreasing speed with which discovered patches can be harvested. We are further able to make predictions as to how fully discovered patches should be exploited before being abandoned as unprofitable, with discovered patches being more heavily exploited when patches are hard to find: patches can be searched for remaining food more quickly, forager density is low, and foragers are relatively slow in traveling to discovered patches

    Consequences of variation in predator attack for the evolution of the selfish herd

    Get PDF
    There is a strong body of evidence that patterns of collective behaviour in grouping animals are governed by interactions between small numbers of individuals within the group. These findings contrast with study of the ā€˜selfish herdā€™, where increasingly complex individual-level movement rules have been proposed to explain the rapid increase in aggregation observed when prey groups are startled by or detect a predator. While individuals using simple rules take into account the position of only a few neighbours, those using complex rules incorporate multiple neighbours, and their relative distance, to determine their movement direction. Here, we simulate the evolution of selfish herd behaviour to assess the conditions under which simple and complex movement rules might evolve, explicitly testing predictions arising from previous work. We find that complex rules outperform simple ones under a range of predator attack strategies, but that simple rules can fix in populations particularly when they are already in the majority, suggesting strong positive frequency dependence in rule success. In addition, we explore whether a movement rule derived from studies of collective behaviour (where individuals use the position of seven neighbours to determine movement direction) performs as successfully as more complex rules, finding again positive frequency dependence in rule success, and a particular role for predator attack strategy (from within or outside the group)

    A game-theoretic model of kleptoparasitic behavior in polymorphic populations

    Get PDF
    Kleptoparasitism, the stealing of food by one animal from another, is a widespread biological phenomenon. In this paper we build upon earlier models to investigate a population of conspecifics involved in foraging and, potentially, kleptoparasitism. We assume that the population is composed of four types of individuals, according to their strategic choices when faced with an opportunity to steal and to resist an attack. The fitness of each type of individual depends upon various natural parameters, for example food density, the handling time of a food item and the probability of mounting a successful attack against resistance, as well as the choices that they make. We find the evolutionarily stable strategies (ESSs) for all parameter combinations and show that there are six possible ESSs, four pure and two mixtures of two strategies, that can occur. We show that there is always at least one ESS, and sometimes two or three. We further investigate the influence of the different parameters on when each type of solution occurs

    Foraging mode switching : the importance of prey distribution and foraging currency

    Get PDF
    A.D.H. was supported by the European Research Council (Advanced Grant 250209 to Alasdair Houston), a College for Life Sciences Fellowship at the Wissenschaftskolleg zu Berlin, and a NERC Independent Research FellowshipNE/L011921/1.Foraging methods are highly variable, but can be grouped into two modes: searching and ambush. While research has focused on the functioning of each mode, the question of how animals choose which to use has been largely neglected. Here we consider a forager that exploits prey that are patchily distributed in space and time. This forager can either sit and wait for prey to appear or search for prey, which is more likely to result in encounters with prey but costs more energy and/or exposes the forager to greater predation risk. The currency that natural selection appears to have optimized will be determined by the additional costs of searching and whether there is a risk of starvation. We therefore compare the predictions of models based on currencies that consider only energy and predation risk to state-dependent models in which energy reserves are used to trade off predation rate, starvation rate and investment in growth. The choice of currency qualitatively affects how mode should change when prey abundance and prey patchiness increase. We show how differing prey distributions can explain variation in effects of experimentally increasing prey abundance. Our work has several implications for the study of foraging mode, population dynamics and the methods used to assess population size.Publisher PDFPeer reviewe

    Modeling scan and interscan durations in antipredator vigilance

    Get PDF
    Many prey species alternate between bouts of foraging and bouts of antipredator vigilance. Models of vigilance typically predict how much total time prey animals should allocate to vigilance but do not specify how that time should be scheduled throughout foraging. Here, we examine how the scheduling of vigilance pays off in terms of food intake and predator detection. Specifically, we study how changes in ecological factors affect the expected duration of scans to look out for predators and the duration of interscan intervals dedicated to foraging. Our framework includes factors like the risk of attack, how difficult it is to locate food and predators, and the distance to protective cover. Our individual-based model makes several predictions about scan and interscan durations, which are discussed in relation to the available empirical evidence in birds and mammals. This model of antipredator vigilance is a first step in incorporating constraints related to food gathering and the detection of predators. Adding such constraints adds a novel dimension to vigilance models and produces a variety of predictions that await empirical scrutiny. (C) 2015 Elsevier Ltd. All rights reserved.PostprintPeer reviewe

    The effect of aggregation on visibility in open water

    Get PDF
    Aggregation is a common life-history trait in open-water taxa. Qualitative understanding of how aggregation by prey influences their encounter rates with predators is critical for understanding pelagic predator-prey interactions and trophic webs.We extend a recently developed theory on underwater visibility to predict the consequences of grouping in open-water species in terms of increased visual detection of groups by predators. Our model suggests that enhanced visibility will be relatively modest, with maximum detection distance typically only doubling for a 100-fold increase in the number of prey in a group. This result suggests that although larger groups are more easily detected, this cost to aggregation will in many cases be dominated by benefits, especially through risk dilution in situations where predators cannot consume all members of a discovered group. This, in turn, helps to explain the ubiquity of grouping across a great variety of open-water taxa.PostprintPeer reviewe

    Egg-laying substrate selection for optimal camouflage by quail

    Get PDF
    Camouflage is conferred by background matching and disruption, which are both affected by microhabitat [1]. However, microhabitat selection that enhances camouflage has only been demonstrated in species with discrete phenotypic morphs [2 and 3]. For most animals, phenotypic variation is continuous [4 and 5]; here we explore whether such individuals can select microhabitats to best exploit camouflage. We use substrate selection in a ground-nesting bird (Japanese quail, Coturnix japonica). For such species, threat from visual predators is high [6] and egg appearance shows strong between-female variation [7]. In quail, variation in appearance is particularly obvious in the amount of dark maculation on the light-colored shell [8]. When given a choice, birds consistently selected laying substrates that made visual detection of their egg outline most challenging. However, the strategy for maximizing camouflage varied with the degree of egg maculation. Females laying heavily maculated eggs selected the substrate that more closely matched egg maculation color properties, leading to camouflage through disruptive coloration. For lightly maculated eggs, females chose a substrate that best matched their egg background coloration, suggesting background matching. Our results show that quail ā€œknowā€ their individual egg patterning and seek out a nest position that provides most effective camouflage for their individual phenotyp
    • ā€¦
    corecore