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Abstract 7 

 8 

 Aggregation is a common life-history trait in open-water taxa. Qualitative 9 

understanding of how aggregation by prey influences their encounter rates with predators is 10 

critical for understanding pelagic predator-prey interactions and trophic webs. We extend a 11 

recently-developed theory on underwater visibility to predict the consequences of grouping in 12 

open water species in terms of increased visual detection of groups by predators. Our model 13 

suggests that enhanced visibility will be relatively modest, with maximum detection distance 14 

typically only doubling for a 100-fold increase in the number of prey in a group. This result 15 

suggests that although larger groups are more easily detected, this cost to aggregation will in 16 

many cases be dominated by benefits, especially through risk dilution in situations where 17 

predators cannot consume all members of a discovered group. This in turn helps to explain the 18 

ubiquity of grouping across a great variety of open-water taxa.  19 

 20 
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Introduction 26 

 27 

 Aggregation is a dominant feature of the life-histories of many organisms (e.g. flocks of 28 

birds, shoals of fish, herds of ungulates, clusters of insect eggs). Of the many selective benefits 29 

that group living can confer, those related to reducing predation risk (e.g. through collective 30 

vigilance, collective defence, predator confusion, and risk dilution) seem the most ubiquitous 31 

(see [1] and [2] for reviews). However, these benefits to group living will be moderated or 32 

even nullified if predators (and other antagonists – such as parasitoids) can detect groups at 33 

greater distances than they can detect single individuals. There is a paucity of current theory 34 

and empirical exploration related to the ability of predators to detect groups of prey, and how 35 

that might be affected by different traits of that group. This is a significant handicap to 36 

understanding the ecological consequences stemming from aggregation as a widespread anti-37 

predatory defence. Firstly, aggregation plays a facilitating role in human harvesting of natural 38 

populations; with many species targeted only because their tendency to aggregate makes 39 

harvesting economically viable [3]. Secondly, as species introductions, range-changes and 40 

extinctions alter ecosystems, our ability to predict consequences will critically depend on our 41 

understanding of interspecific interactions (especially predation – given its ubiquity). Finally, 42 

the detectability of aggregations is also important in ecological contexts other than predator-43 

prey or host-parasite interactions. For example pollinators are attracted to larger aggregations 44 

of flowers from a greater distance away, and this has been linked to increased detectability 45 

(e.g. [4 & 5]). A similar effect has also been reported for attraction of seed-dispersers to 46 

aggregations of fruits (e.g. [6]). An improved quantitative understanding of how aggregation 47 

affects visual detection is vital in these contexts too. 48 

 49 

Existing theory on visual detection of groups of targets  50 
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 The most commonly cited theory on the issue of group visibility remains that of Vine 51 

[7,8]. Vine [7] considered a tightly packed chain of n individuals, each of width l and height h, 52 

which form a straight line of length nl and height h when viewed from the side. He argued that 53 

in terms of visual acuity the important dimension is the minimum one (h in this case), and thus 54 

the length of the line formed by the n individuals was irrelevant to its ease of detection, and 55 

detection rate would be independent of group size. In Vine [8], he admitted that a body of 56 

evidence existed suggesting that humans could more easily detect horizontal lines than points 57 

of the same height. He thus revised his argument to suggest that the maximum distance (r) at 58 

which a chain of individuals could be detected would take the form  59 

 60 

  61 

 62 

where A and B were empirically-determined constants. He suggested on the basis of 63 

experiments with human observers that B seemed to be of the order 0.40-0.45. A consequence 64 

of these values is that r initially rises steeply (r doubling as n increases from 1 to 5), but this 65 

effect quickly wanes in strength at larger group sizes (with highly reduced differences in r 66 

above n = 50). Vine pointed out that the consequences of having less packed individuals so that 67 

there are gaps in the viewed aggregation were unknown, and this remains true. To this we 68 

would add that the contrast of individuals with the background will strongly influence 69 

detectability and is unexplored in this theory. Further, the ecological applicability of this work 70 

is limited, since only a small fraction of natural aggregations involve long chains of 71 

individuals. 72 

 Turner & Pitcher [9] provided the most influential theoretical work for the overall 73 

effect of aggregation on not just detection but prey capture rates. Their theory explored two 74 

simple alternative assumptions for the effect of group size on detection rates: assuming that the 75 
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probability per unit time of a group of prey being detected by a nearby predator is either 76 

independent of group size (n), or increases linearly with n. The authors argued that these two 77 

alternatives likely bracket reality for most natural systems. However, the distribution of real-78 

world cases within this very wide bracket remains unclear. Ioannou et al. [10] argued that 79 

detectability of a group should increase with the visual angle subtended by the group. 80 

However, they did not speculate on how increasing visual angle will translate theoretically into 81 

ecologically-relevant measures such as rate of detection. Treisman [11], on the basis of 82 

unpublished experiments with humans, argued that the probability of target detection increases 83 

linearly with increasing angular area of the target until a critical area is reached, after which 84 

further increasing area brings no further improvement.  85 

 86 

Motivation for our work 87 

 Modelling vision is considerably more tractable in pelagic environments than other 88 

habitats; because the background against which objects are viewed is simple and predictable, 89 

and detection range is strongly influenced by well-characterised patterns of absorption and 90 

scattering of light. Hence, there have been a number of theoretical predictions of pelagic visual 91 

detection (e.g. [12-14] and references therein). However, no previous study has explicitly 92 

explored the detection of a group of individuals. Recently Nilsson et al. [15,16] have offered a 93 

general theory for the visual detection of objects in this environment. Here we build on that 94 

framework, extending it to the situation where an approximately spherical group of targets 95 

(such as a tightly packed school of fish called a bait ball) is detected visually by something 96 

with a camera eye (e.g. a cetacean or predatory fish) viewing it horizontally.  97 

An understanding of the anti-predatory effectiveness of grouping is particularly 98 

important in the pelagic realm, the largest habitat on the planet. Grouping is a common life-99 

history trait in this environment. With no physical structures to offer protection, prey 100 



5 

 

aggregation is an important and common anti-predatory strategy. The consequences of 101 

aggregation for rates of discovery by predators are critical for understanding pelagic predator-102 

prey interactions, and trophic webs. In the next section we develop a new theory for the effects 103 

of group size and various ecological factors on maximum detection distance in an open-water 104 

environment. A key part of this theory is the attenuation of light as it passes through water, 105 

which is substantially greater than in air. Thus the application of our theory is currently limited 106 

to aquatic systems, although it could be adapted to terrestrial and aerial situations where the 107 

background against which prey are viewed is relatively simple (e.g. snowfields, the sky, 108 

mudflats).  109 

 110 

Methods 111 

General theory 112 

 We model detection of a compact spherical school of fish (henceforth called a bait 113 

ball). We begin with the following definitions: 114 

 115 

tN  number of photons collected by the retina in one integration time from the target bait 116 

ball at a negligible viewing distance. We assume that the eye employs spatial 117 

summation to collect all photons from the ball in one big ‘pixel’. This is known as 118 

optimal summation [16], which maximizes detection range, and thus provides an upper 119 

bound for the effect of aggregation on visibility.  120 

 121 

bN  number of photons from the background water (over a pixel the same angular size as 122 

the bait ball pixel) 123 

 124 
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pN  number of photons scattered into the path between the viewer and the bait ball as 125 

viewing distance increases. This is typically referred to as ‘pathlight’.  126 

 127 

C0 inherent Weber contrast of the bait ball against the background water. Given by Nt/Nb – 128 

1. For simplicity, we assume that the bait ball consists of enough individuals that it 129 

appears as a solid wall of opaque fish. Thus the contrast of the ball equals the contrast 130 

of the individual fish.  This contrast attenuates with distance r following 131 

 cos

0

K c r
C C e


 , where c and K are the beam and diffuse attenuation coefficients of the 132 

water, and  is the viewing angle of the predator (0 for looking directly upwards, 180 133 

for looking directly downwards) [17].  134 

 135 

 The pelagic light field is approximately monochromatic at viewing angles greater than 136 

48 from vertical (i.e. outside Snell’s window) even at relatively shallow depths below the 137 

surface, and at all viewing angles at depths greater than approximately 100 m [18]. In these 138 

situations, the beam and diffuse attenuation coefficients of the water (c and K) can be 139 

considered to be approximately constant and equal to the values at the wavelength of peak 140 

penetration (480 nm in this study). In this case,  the four terms defined above are related as: 141 

 142 

   cos

0 1
K c r

t bN N C e


  , and 
  cos

1
K c r

p bN N e


     (1) and (2) 143 

 144 

The first part of (1) is obtained from solving the Weber contrast equation; the second 145 

(exponential) part is obtained from the contrast attenuation equation given above. Equation (2) 146 

is from the pathlight equation for horizontal viewing [17,19]. Now, from [16]: 147 

 148 
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bptbpt NNNRNNN         (3) 149 

 150 

at the maximum sighting distance, where R is the reliability coefficient. The photoreceptor 151 

noise term introduced by Nilsson et al. [16] is negligible at the euphotic depths examined in 152 

this study (<200 m) and thus excluded. Substituting (1) and (2) into (3) gives: 153 

 154 

             cos cos cos cos

0 01 1 1 1 1 1
K c r K c r K c r K c r

b bN C e e R N C e e
               

 
 (4) 155 

 156 

Combining terms gives: 157 

 158 

   cos cos

0 0 2
K c r K c r

bN C e R C e
  

        (5) 159 

 160 

As mentioned above,  cos

0

K c r
C e

 
is the apparent contrast of the bait ball at viewing distance r 161 

and thus is much less than two at the sighting distance unless the light levels are extremely 162 

low, so (5) is well approximated as:  163 

 164 

 cos

0 2
K c r

bN C e R


         (6) 165 

 166 

From [16]: 167 

 168 

    
2

1

2 2

1
4 4

kR l

b b

T A
N q t e L d

r







 
  

  
    

   
      (7) 169 

 170 
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where T is diameter of the bait ball. For the viewing organism A, q, , and t are the diameter 171 

of the pupil, the quantum efficiency of the photoreceptors, the ocular transmittance, and the 172 

integration time of the photoreceptors respectively. The parameters k and l are the absorption 173 

coefficient and the length of the photoreceptors respectively. Lb () is the spectral radiance of 174 

the background light and R() is the normalized absorbance spectrum of the photoreceptors. 175 

We define: 176 

 177 

    
2

1

2

0 1
4

kR l

b

A
N q t e L d








  

 
   
 

       (8) 178 

 179 

which is the number of photons absorbed by a pixel that views a region one steradian in 180 

angular area. This can be thought of as the product of the sensitivity of the eye and the amount 181 

of light available for vision. Since the terms can not be separated, due to the weighted integral, 182 

they are considered as one. Substituting equation (8) into equation (5) gives:  183 

 184 

 cos

0 0 2
4

K c rT
N C e R

r

 
        (9) 185 

 186 

Now T, which is the diameter of the spherical bait ball, is related to the number of fish in the 187 

target group n via: 188 

 189 

3 06



nV
T            (10) 190 

 191 

where V0 is the volume each fish occupies in the bait ball (including the fish and the 192 

surrounding water). This volume varies by species and swimming speed, but is approximately 193 
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the cube of the body length of the fish for a school larger than 50 individuals [20]. Substituting 194 

(10) into (9) and rearranging gives:  195 

 196 

  cos 0 03
0

6

8

c K r C nV
re N

R

 




        (10) 197 

 198 

Gathering the constants and setting the reliability coefficient R to 1.96 (the value for 95% 199 

confidence of detection), we get: 200 

 201 

  cos 3
0 0 00.4

c K r
re C N nV


        (11a) 202 

 203 

which can be solved for r as:  204 

 205 

 
  3

0 0 00.4 cos

cos

W c K C N nV
r

c K





 
 


 or      (11b) 206 

 207 

 3
0 0 0

1
0.4r W c C N nV

c
         (11c) 208 

 209 

for horizontal viewing. W(x) is the LambertW function (the inverse of xy xe ), which can be 210 

calculated using Matlab, Maple, Mathmatica and other computational packages. 211 

  212 

Specific example parameter values 213 

 For the visual system of an Atlantic blue marlin predator (Makaira nigricans), 214 

representative values are: pupil diameter A = 0.019 m, integration time t = 0.017 s, ocular 215 

transmittance  = 0.8, and quantum efficiency q = 0.34. The photoreceptors of the marlin have 216 
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a peak absorbance at 480 nm, an absorption coefficient of 0.035 m-1, and a length of 57 m 217 

[21].  218 

 219 

  The background radiance spectra (Lb()) were modeled using measured profiles of 220 

inherent optical properties and commercial radiative transfer software (HydroLight 5.1, 221 

Sequoia Scientific). The ability of radiative transfer theory to accurately model oceanic 222 

radiance distributions has been validated by in situ measurements of selected radiances and 223 

irradiances in multiple studies (e.g. [22][23]).  The agreement between modeled and measured 224 

spectral radiances is particularly good in oceanic waters, which are easily characterized 225 

(reviewed by [18]).  226 

Depth profiles of inherent optical properties and chlorophyll-a concentration from 227 

tropical oceanic water (approximately Jerlov oceanic type I; [24]) needed for the radiative 228 

transfer software were obtained from Drs. Andrew Barnard, Scott Pegau and Ronald Zaneveld 229 

(College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon), 230 

who collected them using a dual path, multiband absorption and attenuation meter (ac-9, 231 

WETLabs) and fluorometer in the Equatorial Pacific ( 00’N 17721’W).  Absorption and 232 

beam attenuation coefficients (at 412, 440, 488, 510, 532, 555, 650, and 676 nm) were 233 

measured to a depth of 199 m and chlorophyll–a concentration was measured at 1 m intervals 234 

to a depth of 110 m (Figure 1a).   235 

Underwater radiance distributions were calculated from 400 to 700 nm at 10 nm 236 

intervals and the surface to 200 m depth at 10 m intervals. The sky was assumed to be 237 

cloudless, the sea to be calm, and the sun at the zenith.  The sky irradiance was calculated 238 

using the Radtran model ([25]), and the sky radiance angular distribution was calculated using 239 

the semi-empirical model given in [26].  Both models account for atmospheric effects, such as 240 

the reddening of the sun as it approaches the horizon, and are well established. Pure water 241 
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absorption was taken from [27] , and the particle scattering phase function was an average-242 

particle phase function based on measurements by Petzold [28]; tabulated values are given by 243 

Mobley [18, table 3.10].  Chlorophyll fluorescence was calculated from the measured 244 

chlorophyll-a concentration using a modeled phytoplankton absorption spectrum taken from 245 

[29] and a fluorescence efficiency of 0.02 that was independent of excitation wavelength.  246 

Raman scattering by the water molecules was also included [30]. These values were used to 247 

calculate estimates of the number of photons captured per steradian per integration time (No).  248 

Figure 1b shows the values for three oceanic predators as a function of depth.  249 

    250 

  251 

Results 252 

 253 

 In figure 2 we plot maximum horizontal sighting distance (r ) as a function of the 254 

number of fish in the group (n, varying over three orders of magnitude from 10 to 10,000) and 255 

depth (from 0 at the surface to 200 m depth) for three values of the inherent Weber contrast 256 

between the fish and the background (0.25, 0.5 and 1). For reference, a contrast of 0.25 would 257 

be found in a relatively cryptic silvery fish, such as a herring or sardine, a value of 0.5 would 258 

be for a typical reef fish, and a value of one would be for a black fish. We solve equation (11) 259 

for the maximum distance (r ) at which the group of individuals of approximate individual 260 

lengths of  10 cm can be detected. Our key results are however qualitatively unchanged for 261 

different sized fish. For example, by inspection of equations (9) and (11), we can see 262 

(unsurprisingly) that we predict that larger individual size of fish leads to longer sighting 263 

distances, but this effect is relatively modest, with the rate of increase being much slower than 264 

linear.  265 
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 Our first key prediction concerns the inherent visual contrast of the prey against the 266 

background. It is unsurprising that r increases with increasing inherent contrast (Co) of the 267 

prey. What is less obvious is that this effect is non-linear: having a four times greater contrast 268 

does not increase sighting distance four-fold. This is because sighting distance is related to a 269 

function of the natural logarithm of the contrast (the effect of change in contrast can be seen in 270 

greatest detail in Figure 3). Also less obvious is that there is no strong effect of contrast on the 271 

shape of the r-n relationship, and so we would not expect the visibility costs of grouping to be 272 

inherently different for prey of different contrasts against the background. By inspection of 273 

equation 11, all three terms on the right will be the same in this regard: inherent contrast, the 274 

square root of photons (the weighted product of the intensity of illumination and sensitivity of 275 

the viewer), and the cube root of the bait ball volume (and so the length of the individual prey 276 

fish) all affect the relative sighting distance in a similar way.  As a rule of thumb, the number 277 

of photons drops by a factor of ten every 70 m in clear oceanic water [18], so the square root 278 

drops by a factor of about three. Thus, as an example, cutting contrast to a third of what it was 279 

has the same effect as moving the bait ball 70 m deeper or cutting the number of individuals by 280 

a factor of 27. This line of arguments may explain why schooling pelagic fish nearly always 281 

invest in mirrored scales that reflect much of the incident light to drop their inherent contrast 282 

considerably [31].   283 

 Our next key result is the effect of depth, with sighting distances being maximised at 284 

around 100m, above that the dominant factor is higher attenuation of horizontally travelling 285 

light (high c) caused by suspended particles (e.g. phytoplankton), and below that the dominant 286 

factor is low incident light levels (leading to low N0) caused by attenuation of sunlight as it 287 

passes through the surface waters above.  288 

 Our primary interest has been in predicting the relationship between maximum sighting 289 

distance (r ) and group number (n). Unsurprisingly, r increases with n under all circumstances. 290 
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It is also perhaps unsurprising that the r-n relationship flattens as n increases, but what is less 291 

obvious is that (even over the broad range of n considered) there is no saturation of the curve. 292 

That is, we can still see appreciable increase in r as n changes from 1,000 to 10,000 for 293 

example. This is due to optimal summation, which allows the fish to make its visual pixel the 294 

same size as the bait ball. Thus, at least over the situations we model, there is no ceiling effect 295 

whereby after a group reaches a certain size, further increases in size do not increase the ease 296 

of detection of the group.  However of most interest is the relatively modest effect of 297 

increasing n: under all the circumstances that we explored, increasing the group size by two 298 

orders of magnitude (i.e. multiplying n by a factor of 100) causes r to rise by less than a factor 299 

of two. Even this is likely an over-estimate, since not all animals employ optimal summation. 300 

By assuming optimal summation we are finding the longest possible sighting range. The 301 

relatively modest costs of grouping in terms of increased visual detection may be relatively 302 

easily outweighed by benefits through risk dilution, collective vigilance and/or confusion 303 

effects, all of which have been demonstrated to increase rapidly with increasing group size (see 304 

Discussion and [1]). If maximum sighting distance doubles, then this would suggest that the 305 

volume of space over which the prey can be detected increases by a factor of eight. Thus, our 306 

model predicts that (as would be expected) a group of 5,000 pelagic prey is more obvious to 307 

predators than a group of 50, and this should increase the rate at which the larger group is 308 

discovered by predators, but only by a factor of eight or less, the exact number depending on 309 

the details of the predator’s foraging strategy.  310 

 In Figure 3, we show a greater range of values of contrast for three levels of N0, 311 

corresponding (for our Blue Marlin viewer) to depths of about 50, 100 and 200 m (beam 312 

attenuation coefficient c is considered to be at a constant value of 0.1 for all three situations). 313 

This emphasizes that the inevitable rise in sighting distance with increasing group size can be 314 

counteracted by a decrease in the inherent contrast, leading to our prediction that the larger the 315 
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characteristic shoal size of fish the stronger the selection pressure should be for morphological 316 

adaptations (most obviously mirrored scales) that reduce contrast.  317 

 It is important to note that our visual model allows the minimum contrast threshold of 318 

the viewer to go well below levels that have actually been measured. It may very well be that 319 

natural predators do achieve these low levels, but so far this has not been demonstrated in large 320 

pelagic predators. The lowest threshold measured for fish (and indeed for any animal) is 0.005 321 

[32]. Figure 4 shows the sighting distance versus depth and group size using the same 322 

procedures as used to generate Figure 2 but with the additional constraint that the contrast 323 

threshold of the viewer cannot go below 0.005. As can be seen by comparing Figures 2 and 4, 324 

this added constraint does not change any of our qualitative conclusions. Interestingly though, 325 

group size does not affect sighting distance at all at shallower depths under this constraint. For 326 

the viewer to get any advantage when viewing larger groups at these depths, its contrast 327 

threshold would have to be very low indeed. One thing that is obvious from both figures 2 and 328 

4 is that water clarity has the biggest influence on sighting distance, because it is the only 329 

variable outside the (very slowly increasing) LambertW function. This is why the schools can 330 

be seen at greater distance at depth despite it being darker, so long as the water is clearer, an 331 

effect commonly experienced by scuba divers as they drop below the murky surface layer to 332 

the darker but clearer depths. 333 

 334 

Discussion 335 

 336 

 The main prediction of our model is that in general a 100-fold increase in the number of 337 

individuals in a group will only lead to at most a doubling in the range at which prey are visible 338 

to a predator and so (in a worst case where individuals could be detected from all angles) the 339 
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larger group might be detected eight times as frequently as the smaller. We now consider the 340 

anti-predatory benefits of grouping for comparative purposes. 341 

 The benefits of risk dilution can sometimes be substantial. If the predator is relatively 342 

small in comparison to the prey and not as fleet as the prey, then it may only be able to capture 343 

a single individual from a group. In this case, the dilution benefits of being in a group a 344 

hundred times larger (and having the risk of being the selected individual reduced by a factor 345 

of 100) will far outweigh the eight-fold increase in frequency of encounter of the group with a 346 

predator. However at the opposite extreme where the predator is large (or hunts in packs) and 347 

fleet compared to the prey, then all of a discovered group may be consumed and there is no 348 

dilution benefit to grouping. In general, available empirical evidence (reviewed in [2]) suggests 349 

both these extreme situations are commonplace, and ecologically and taxonomically 350 

widespread. We can conclude that in cases where a single attack captures only a single 351 

individual or small fraction of the prey group, and a predator cannot repeatedly attack a 352 

discovered group, then dilution benefits will exceed the visibility costs estimated here.  353 

 Although predator confusion resulting in a reduced ability to capture prey when faced 354 

with larger moving groups has often been demonstrated (see Beauchamp [2] for a review) the 355 

effect of group size has rarely been quantified, and current theory does not allow strength of 356 

confusion and prey survival to be quantitatively linked [33] . However the confusion effect can 357 

be strong, In the most thorough study of the effects of group size, Landeau & Terborgh [34] 358 

demonstrated that predatory bass were always successful in quickly capturing a single minnow 359 

when both were in an experimental arena together. In contrast, this success rate (for capturing 360 

every single minnow) dropped to 11% despite an extended time for interaction when the prey 361 

group size was increased to 15. Our model suggests that such an effect could again dominate 362 

the cost of increased ease of detection of larger groups.  363 
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 If we turn to increased vigilance as another anti-predatory benefit of grouping, the most 364 

relevant data from the recent extensive review of Beauchamp [2] is that of Kenward [35] on 365 

the characteristic distance at which flocks of woodpigeons reacted to apparent attacks by a 366 

trained goshawk. Single pigeons reacted on average when the goshawk was only 4m away, this 367 

distance increased four-fold for flocks of between two and ten birds and ten-fold for flocks of 368 

more than fifty. Interpretation of such data is complicated because there may be a lag between 369 

detection of the approaching predator and flight response, but this is likely to be low in this 370 

system where predators are much more successful if they can pin prey to the ground, and in 371 

any case such a lag is likely to be bigger for large flocks where risk dilution will be substantial. 372 

However, as with confusion, it is difficult to quantify the relationship between early predator 373 

detection and prey survival. Clearly there is a dearth of data quantifying how vigilance benefits 374 

of aggregation change with aggregation size, but given the modest costs of increased detection 375 

estimated here there is at the very least no reason to reject the possibility of vigilance benefits 376 

outstripping these costs. However, vigilance for predators is particularly beneficial in situations 377 

where forewarned prey can flee to a place of safety, and this option is generally not available in 378 

pelagic environments.  379 

 Finally, another factor that mitigates the cost of larger groups being detectable at a 380 

greater distance is that, for finite prey populations, increases in group size correspond with a 381 

decrease in the total number of groups in the environment. This reduction in the density of 382 

groups means at any one time a predator will be a greater distance on average from the nearest 383 

group [9,10]. However, evaluation of the consequences of this for predators and prey would 384 

require consideration of how such aggregation changed not just average distance from prey but 385 

also predator activity budgets and search strategies (i.e. in terms of speed and direction of 386 

travel during searching). This is an open but tractable problem theoretically, which (in common 387 
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with all work on predation) should benefit from a step change in our ability to collect data on 388 

free-living animals through miniaturisation of on-board data-loggers [36]   389 

Finally, we also note that the benefits of remaining in a group often appear to hold across a 390 

broad range of group sizes, and after attack on the group has begun. Observation of bait balls 391 

suggests that the tenancy to aggregate remains even as the ball of fish is whittled away by a 392 

group of predators [37].  393 

 394 

 In summary, we have been able to offer an estimate of the likely consequences of 395 

grouping in open water species in terms of increased visibility of groups to predators. Our 396 

model suggests that such enhanced visibility will be relatively modest, with maximum 397 

detection distance only doubling for a 100-fold increase in the number of individuals in the 398 

group. This suggests that although larger groups will likely be detected and attacked more 399 

often by predators, cost to grouping will in many cases be dominated by benefits through 400 

(some or all of) risk dilution, predator confusion, and enhanced collective detection of 401 

approaching predators. This helps to explain the ubiquity of grouping across a great variety of 402 

open-water taxa – the greatest predation cost to this behaviour is likely to be dominated by 403 

expected benefits.  404 
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Figure Captions 487 

 488 

Figure 1: The optical parameters in the water studied. ) A) The beam attenuation coefficient 489 

(at 480 nm) as a function of depth. B) The number of photons (on a log scale) absorbed by the 490 

eye of an Atlantic Blue Marlin (Makaira nigricans: pupil diameter = 0.019 m) in one 491 

integration time if looking horizontally and viewing a full steradian in a sample of clear 492 

oceanic water (N0). To show the effect of pupil diameter on N0, values for two other pelagic 493 

predators – the Atlantic Mackerel (Scomber Scombrus: pupil diameter = 0.0096 m) and the 494 

Bluefin Tuna (Thunnus thynnus: pupil diameter = 0.036 m) – are also given. All visual 495 

parameters other than pupil diameter remain that of the marlin. 496 

Figure 2: Sighting distance (in meters) of a spherical bait ball of fish (each being 0.1 m in 497 

length) as a function of depth and number of fish in the ball (on a log scale). The left, middle, 498 

and right panels correspond to fish with inherent contrasts of 0.25, 0.5 and 1.0 respectively. 499 

The complex effect of depth on sighting distance is due to the fact that deeper water is both 500 

darker and clearer, which affect sighting distance in opposite ways.  501 

Figure 3: Sighting distance (in meters) of a spherical bait ball of fish (each being 0.1 m in 502 

length) as a function of both the inherent contrast and number of fish in the ball (on a log 503 

scale). The left, middle, and right panels correspond to the number of photons absorbed by a 504 

marlin eye (N0, see text) at daytime depths in clear oceanic water of approximately 200, 100, 505 

and 50 meters respectively (the beam attenuation coefficient c = 0.1 m-1 throughout).  506 

 507 

Figure 4: Sighting distance (in meters) of a spherical bait ball of fish (each being 0.1 m in 508 

length) as a function of depth and number of fish in the ball (on a log scale). The left, middle, 509 

and right panels correspond to fish with inherent contrasts of 0.25, 0.5 and 1.0 respectively. In 510 
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this case (as opposed to the results shown in Figure 2), the minimum contrast threshold of the 511 

viewer is not allowed to drop below 0.005, which is the lowest value measured in any animal.   512 

 513 

 514 


