75 research outputs found

    Performance, Stability, and Control Investigation at Mach Numbers from 0.4 to 0.9 of a Model of the "Swallow" with Outer Wing Panels Swept 25 degree with and without Power Simulation

    Get PDF
    An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model (the "Swallow") with the outer wing panels swept 25 deg has been conducted in the Langley 16-foot transonic tunnel. The wing was uncambered and untwisted and had RAE 102 airfoil sections with a thickness-to-chord ratio of 0.14 normal to the leading edge. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. A pair of swept lateral fins and a single vertical fin were mounted on each engine nacelle to provide aerodynamic stability and control. Jets-off data were obtained with flow-through nacelles, stimulating the effects of inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained through a Mach number range of 0.40 to 0.90 at angles of attack and angles of sideslip from 0 deg to 15 deg. Longitudinal, directional, and lateral control were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control

    Aerodynamic Load Measurements and Opening Characteristics of Automatic Leading Edge Slats on a 45 deg Sweptback Wing at Transonic Speeds

    Get PDF
    Measurements of the normal force and chord force were made on the slats of a sting-mounted wing-fuselage model through a Mach number range of 0.60 to 1.03 and at angles of attack from 0 to 20 deg at subsonic speeds and from 0 to 8 deg at Mach number 1.03. The 20-percent-chord tapered leading-edge slats extended from 25 to 95 percent of the semispan and consisted of five segments. The model wing had 45 deg sweep, an aspect ratio of 3.56, a taper ratio of 0.3, and NACA 64(06)AO07 airfoil sections. Slat forces and moments were determined for the slats in the almost-closed and open positions for spanwise extents of 35 to 95 percent and 46 to 95 percent of the semispan. The results of the investigation showed little change in the slat maximum force and moment coefficients with Mach number. The coefficients for the open and almost-closed slat positions had similar variations with angle of attack. The loads on the individual slat segments were found to increase toward the tip for moderate angles of attack and decrease toward the tip for high angles of attack. An analysis of the opening and closing characteristics of aerodynamically operated slats opening on a circular-arc path is included

    A New Threat to Honey Bees, the Parasitic Phorid Fly Apocephalus borealis

    Get PDF
    Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD

    Northern Spotted Owl (Strix occidentalis caurina) Genome: Divergence with the Barred Owl (Strix varia) and Characterization of Light-Associated Genes

    Get PDF
    We report here the assembly of a northern spotted owl (Strix occidentalis caurina) genome. We generated Illumina paired-end sequence data at 90× coverage using nine libraries with insert lengths ranging from ∼250 to 9,600 nt and read lengths from 100 to 375 nt. The genome assembly is comprised of 8,108 scaffolds totaling 1.26 × 109 nt in length with an N50 length of 3.98 × 106 nt. We calculated the genome-wide fixation index (FST) of S. o. caurina with the closely related barred owl (Strix varia) as 0.819. We examined 19 genes that encode proteins with light-dependent functions in our genome assembly as well as in that of the barn owl (Tyto alba). We present genomic evidence for loss of three of these in S. o. caurina and four in T. alba. We suggest that most light-associated gene functions have been maintained in owls and their loss has not proceeded to the same extent as in other dim-light-adapted vertebrates

    Distinctive Gut Microbiota of Honey Bees Assessed Using Deep Sampling from Individual Worker Bees

    Get PDF
    Surveys of 16S rDNA sequences from the honey bee, Apis mellifera, have revealed the presence of eight distinctive bacterial phylotypes in intestinal tracts of adult worker bees. Because previous studies have been limited to relatively few sequences from samples pooled from multiple hosts, the extent of variation in this microbiota among individuals within and between colonies and locations has been unclear. We surveyed the gut microbiota of 40 individual workers from two sites, Arizona and Maryland USA, sampling four colonies per site. Universal primers were used to amplify regions of 16S ribosomal RNA genes, and amplicons were sequenced using 454 pyrotag methods, enabling analysis of about 330,000 bacterial reads. Over 99% of these sequences belonged to clusters for which the first blastn hits in GenBank were members of the known bee phylotypes. Four phylotypes, one within Gammaproteobacteria (corresponding to “Candidatus Gilliamella apicola”) one within Betaproteobacteria (“Candidatus Snodgrassella alvi”), and two within Lactobacillus, were present in every bee, though their frequencies varied. The same typical bacterial phylotypes were present in all colonies and at both sites. Community profiles differed significantly among colonies and between sites, mostly due to the presence in some Arizona colonies of two species of Enterobacteriaceae not retrieved previously from bees. Analysis of Sanger sequences of rRNA of the Snodgrassella and Gilliamella phylotypes revealed that single bees contain numerous distinct strains of each phylotype. Strains showed some differentiation between localities, especially for the Snodgrassella phylotype

    Temporal Analysis of the Honey Bee Microbiome Reveals Four Novel Viruses and Seasonal Prevalence of Known Viruses, Nosema, and Crithidia

    Get PDF
    Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼1011 viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January

    Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania

    Get PDF
    Trypanosomatid parasites are causative agents of important human and animal diseases such as sleeping sickness and leishmaniasis. Most trypanosomatids are transmitted to their mammalian hosts by insects, often belonging to Diptera (or true flies). These are called dixenous trypanosomatids since they infect two different hosts, in contrast to those that infect just insects (monoxenous). However, it is still unclear whether dixenous and monoxenous trypanosomatids interact similarly with their insect host, as fly-monoxenous trypanosomatid interaction systems are rarely reported and under-studied–despite being common in nature. Here we present the genome of monoxenous trypanosomatid Herpetomonas muscarum and discuss its transcriptome during in vitro culture and during infection of its natural insect host Drosophila melanogaster. The H. muscarum genome is broadly syntenic with that of human parasite Leishmania major. We also found strong similarities between the H. muscarum transcriptome during fruit fly infection, and those of Leishmania during sand fly infections. Overall this suggests Drosophila-Herpetomonas is a suitable model for less accessible insect-trypanosomatid host-parasite systems such as sand fly-Leishmania

    IMSA: Integrated metagenomic sequence analysis for identification of exogenous reads in a host genomic background

    Get PDF
    Metagenomics, the study of microbial genomes within diverse environments, is a rapidly developing field. The identification of microbial sequences within a host organism enables the study of human intestinal, respiratory, and skin microbiota, and has allowed the identification of novel viruses in diseases such as Merkel cell carcinoma. There are few publicly available tools for metagenomic high throughput sequence analysis. We present Integrated Metagenomic Sequence Analysis (IMSA), a flexible, fast, and robust computational analysis pipeline that is available for public use. IMSA takes input sequence from high throughput datasets and uses a user-defined host database to filter out host sequence. IMSA then aligns the filtered reads to a user-defined universal database to characterize exogenous reads within the host background. IMSA assigns a score to each node of the taxonomy based on read frequency, and can output this as a taxonomy report suitable for cluster analysis or as a taxonomy map (TaxMap). IMSA also outputs the specific sequence reads assigned to a taxon of interest for downstream analysis. We demonstrate the use of IMSA to detect pathogens and normal flora within sequence data from a primary human cervical cancer carrying HPV16, a primary human cutaneous squamous cell carcinoma carrying HPV 16, the CaSki cell line carrying HPV16, and the HeLa cell line carrying HPV18
    corecore