3,562 research outputs found

    Servitization strategies from customers’ perspective: the moderating role of co-creation

    Get PDF
    © 2018, Emerald Publishing Limited. Purpose: This paper aims to investigate the moderating role of co-creation in the implementation of servitization strategies in the pharmaceutical industry in a business-to-business (B-to-B) context. More specifically, this investigation explores the impact of different levels of services (base, intermediate and advanced) on servitization and on performance by using co-creation as a moderating factor. Design/methodology/approach: A research framework was developed and empirically tested in the pharmaceutical sector. Data collection was conducted through the online distribution of questionnaires. The final sample included 219 pharmacy stores, and the data were analysed using structural equation modelling. Findings: Main findings suggest that when the level of co-creation of the design of services is high, there are significant effects of servitization on firm performance. The moderating effect of co-creation is illustrated in regard to intermediate and advanced services, but results referring to the impact of intermediate services on servitization appear non-significant with a low degree of co-creation. No significant effects could be found for the impact of base services on performance and servitization for both high and low degrees of co-creation. Findings show an impact of advanced services on performance through the mediating effect of servitization when the degree of co-creation is high. Originality/value: Most research concerning servitization has been done from the perspective of manufacturers and service providers. This study adds value to the literature because it was designed from a customer’s perspective. Moreover, it contributes towards the conceptualization of the servitization research strategy and business models in a B2B context. This is accomplished through the investigation of the moderating effect of co-creation on the impact of the different levels of services on servitization and on performance

    Leaders among the leaders in Economics: a network analysis of the Nobel Prize laureates

    Get PDF
    We analyse the production and networks of Nobel laureates in Economics, employing the Normalized Impact Factor (NIF) of their publications in the Journal of Citation Report (Economics), to identify the academic leaders among those laureates awarded between 1969 and 2016. Our results indicate that direct collaborations among laureates are, in general, rare, but when we add all the co-authors of the laureates, there appears a very large component containing 70% of the nodes, so that more than two thirds of the laureates can be connected through only two steps. Deaton, Tirole, Arrow, and Stiglitz are identified as leaders according to the total production of their respective networks

    The X(3872) and other X,Y,Z Resonances as Hidden Charm Meson-Meson Molecules

    Full text link
    We report on some ideas concerning the nature of the X(3872) resonance and the need for approximately equal charged and neutral components of DDˉ∗+ccD \bar{D}^* +cc. Then we discuss how some hidden charm states are obtained from the interaction between vector mesons with charm and can be associated to some of the charmonium-like X,Y,Z states. Finally we discuss how the nature of these states could be investigated through different types of radiative decay.Comment: Presented at the Charm2010 Workshop, Beijing, Oct. 201

    Finanzas internacionales

    Get PDF
    Documento PDF, 181 pĂĄginasGuĂ­a de estudio para el curso Finanzas internacionales, cĂłdigo 0478, que imparte la Escuela de Ciencias de la AdministraciĂłn de la UNED.Universidad Estatal a Distancia de Costa Ric

    Long-range ferromagnetism of Mn12 acetate single-molecule magnets under a transverse magnetic field

    Full text link
    We use neutron diffraction to probe the magnetization components of a crystal of Mn12 single-molecule magnets. Each of these molecules behaves, at low temperatures, as a nanomagnet with spin S = 10 and strong anisotropy along the crystallographic c axis. Application of a magnetic field perpendicular to c induces quantum tunneling between opposite spin orientations, enabling the spins to attain thermal equilibrium. Below approximately 0.9 K, intermolecular interactions turn this equilibrium state into a ferromagnetically ordered phase. However, long range ferromagnetic correlations nearly disappear for fields larger 5.5 T, possibly suggesting the existence of a quantum critical point.Comment: 4 pages, 4 figure

    New instrumentation and analysis methodology for nano-impact testing

    Get PDF
    Nanoindentation testing has become increasingly popular for mechanical characterization of materials. This is motivated by the high versatility of the technique that allows testing of small volumes that could not be tested otherwise by macroscopic techniques, with minimal test preparation. The interest on nano-/microscale characterization of materials has been also extended to the study of high strain rate mechanical behaviour. One of the available techniques is nano-impact testing. It is carried out on a pendulum-based force-actuated, displacement-sensing device with the ability of performing energy-controlled impacts. The combination of conventional nanoindentation, for which a range of strain rates from 10-3 to 10-1 s-1 can be tested, with nano-impact provides a tool for materials characterization at the nano/microscale from 10-3 to 103 s-1. Regarding the analysis of nano-impact test results, there has been no consensus in literature over what material metrics to extract from the test. Several authors base the analysis of nano-impact test on the calculation of a dynamic hardness defined as change in kinetic energy throughout the impact divided by the residual volume of indentation [1-4]. However, there are two issues with the assumptions in which this equation is based. First, it only considers the change in kinetic energy and it neglects other important contributions like the work of impulse force. Then, it assumes that hardness is constant throughout the entire impact period. While for self-similar indenters this is true in the loading part, Cheng’s dimensional analysis shows that this is not the case in the unloading [5]. Therefore, the hardness calculated from this definition is not necessarily equal to the hardness under load commonly used in the instrumented indentation literature. To this end, an alternative analysis methodology is proposed. The analysis is based on the same definition of hardness under load commonly used in the instrumented indentation literature, computed as force divided by contact area. This way, the nano-impact hardness is directly comparable with results of conventional nanoindentation that use this definition. The instrumentation of the nanoindentation device with force-sensing capability was found crucial for the implementation of the analysis methodology. In addition, and in line with the nano-impact hardness definition in literature, an energy-based hardness is presented. The technique is assessed using finite element simulations and by testing six materials covering a wide range of mechanical behaviours. The FE simulations are used to assess the two energy-based definitions of hardness, the one in literature and the one proposed in this work. It was found that the literature definition leads to values that differ significantly from the ones obtained as force divided by contact area. On the other hand, the proposed energy-based definition provides values that match the ones obtained by force-approach. The experimental results are also in line with this conclusions. The literature energy-based hardness presents significant differences compared to the force-based hardness, which are higher for the more elastic materials. Furthermore, the force-based hardness computed from nano-impact results was compared with the hardness from conventional nanoindentation. A close match is found between both set of results. References [1] J.R. Trelewicz, C.A. Schuh, The Hall–Petch breakdown at high strain rates: Optimizing nanocrystalline grain size for impact applications, Appl. Phys. Lett. 93 (2008) 171916. [2] H. Somekawa, C.A. Schuh, High-strain-rate nanoindentation behavior of fine-grained magnesium alloys, Journal of Materials Research. 27 (2012) 1295–1302. [3] J.M. Wheeler, A.G. Gunner, Analysis of failure modes under nano-impact fatigue of coatings via high-speed sampling, Surface and Coatings Technology. 232 (2013) 264–268. [4] C. Zehnder, J.-N. Peltzer, J.S.K.-L. Gibson, S. Korte-Kerzel, High strain rate testing at the nano-scale: A proposed methodology for impact nanoindentation, Materials & Design. 151 (2018) 17–28. [5] Y.-T. Cheng, C.-M. Cheng, Scaling, dimensional analysis, and indentation measurements, Materials Science and Engineering: R: Reports. 44 (2004) 91–149. doi:10.1016/j.mser.2004.05.001

    Academic Contest and Social Networking to Promote Technology and Information Literacy among University Students

    Get PDF
    AbstractSpanish universities have recently adapted their studies to the requirements of the European Higher Education Area (EHEA). This process has involved the consideration of the development of computer and informational skills as an academic objective. In order to develop these skills, among other activities, an informative video has been disseminated. The design of the communication campaign, developed through viral marketing and social networks has been the result of and empirical research carried out by students of the University of Valencia. This paper describes the research objectives, questions, techniques and main findings

    Ac magnetic susceptibility of a molecular magnet submonolayer directly patterned onto a microSQUID sensor

    Get PDF
    We report the controlled integration, via Dip Pen Nanolithography, of monolayer dots of ferritin-based CoO nanoparticles (12 Bohr magnetons) into the most sensitive areas of a microSQUID sensor. The nearly optimum flux coupling between these nanomagnets and the microSQUID improves the achievable sensitivity by a factor 100, enabling us to measure the linear susceptibility of the molecular array down to very low temperatures (13 mK). This method opens the possibility of applying ac susceptibility experiments to characterize two-dimensional arrays of single molecule magnets within a wide range of temperatures and frequencies.Comment: 4 pages 3 figure

    Alignment Of Magnetic Anisotropy Axes In Crystals Of Mn12 Acetate And Mn12-tBuAc Molecular Nanomagnets: Angle-Dependent Ac Susceptibility Study

    Get PDF
    We report the results of angular-dependent ac susceptibility experiments performed on two derivatives of Mn12 single-molecular magnets: the well-known Mn12 acetate, which contains disordered acetic acid molecules in interstitial sites of the crystal structure and Mn12-tBuAc, for which solvent molecules are very well ordered in the structure. Our results show (a) that the angular variation is very similar in the two compounds investigated and compatible with a maximum misalignment of the anisotropy axes of less than 3° and (b) that the tunneling rate is faster for the better ordered Mn12-tBuAc compound. These experiments question interstitial disorder as the dominant origin of the thermally activated tunneling phenomenon
    • 

    corecore