2,484 research outputs found
Regeneracion de plantas en tomate de árbol (Cyphomandra Betacea Cav. Sendt.) Mediante organogénesis inducida a partir de callos
El objetivo de este trabajo fue obtener plantas de tomate de árbol (C. betacea) bajo condiciones
in-vitro, mediante la organogénesis inducida en callos. Se Evaluaron los medios MS (testigo),
MS+2,4-D5μM, MS+2,4-D10μM y MS+2,4-D15μM, para los tratamientos dos tres y cuatro se
agrego 13 μM de cinetina. Se utilizo un diseño de Bloques Completos al Azar con cuatro
repeticiones, para un total de 16 unidades experimentales. Cada unidad experimental está
compuesta por diez frascos con capacidad de 120 ml cada uno. En cada frasco se agregaron 20 ml
de medio de cultivo, sembrándose tres callos de aproximadamente 5 mm de diámetro, teniendo
120 callos por unidad experimental. El mayor porcentaje de plantas regeneradas (14,66 %) se
obtuvo con MS+2,4-D5μM y el menor porcentaje de plantas regeneradas (2,91%) se obtuvo con
MS+2,4-D15μM. La mayor cantidad de raíces, tallos, hojas y plantas formadas fue con MS+2,4-
D5μM, con valores 0,52, 0,14, 0,15 y 0,05 respectivamente y el menor valor se obtuvo con
MS+2,4-D15μM con valores 0,09, 0,04, 0,008 y 0 respetivamente
Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex
We trained monkeys to compare the frequencies of two mechanical vibrations applied sequentially to the tip of a finger and to report which of the two stimuli had the higher frequency. This task requires remembering the first frequency during the delay period between the two stimuli. Recordings were made from neurons in the inferior convexity of the prefrontal cortex (PFC) while the monkeys performed the task. We report neurons that fire persistently during the delay period, with a firing rate that is a monotonic function of the frequency of the first stimulus. Separately from, and in addition to, their correlation with the first stimulus, the delay period firing rates of these neurons were correlated with the behavior of the monkey, in a manner consistent with their interpretation as the neural substrate of working memory during the task. Most neurons had firing rates that varied systematically with time during the delay period. We suggest that this time-dependent activity may encode time itself and may be an intrinsic part of active memory maintenance mechanisms
A recurrent network model of somatosensory parametric working memory in the prefrontal cortex
A parametric working memory network stores the information of an analog stimulus in the form of persistent neural activity that is monotonically tuned to the stimulus. The family of persistent firing patterns with a continuous range of firing rates must all be realizable under exactly the same external conditions (during the delay when the transient stimulus is withdrawn). How this can be accomplished by neural mechanisms remains an unresolved question. Here we present a recurrent cortical network model of irregularly spiking neurons that was designed to simulate a somatosensory working memory experiment with behaving monkeys. Our model reproduces the observed positively and negatively monotonic persistent activity, and heterogeneous tuning curves of memory activity. We show that fine-tuning mathematically corresponds to a precise alignment of cusps in the bifurcation diagram of the network. Moreover, we show that the fine-tuned network can integrate stimulus inputs over several seconds. Assuming that such time integration occurs in neural populations downstream from a tonically persistent neural population, our model is able to account for the slow ramping-up and ramping-down behaviors of neurons observed in prefrontal cortex
Feasibility of diffusion and probabilistic white matter analysis in patients implanted with a deep brain stimulator.
Deep brain stimulation (DBS) for Parkinson\u27s disease (PD) is an established advanced therapy that produces therapeutic effects through high frequency stimulation. Although this therapeutic option leads to improved clinical outcomes, the mechanisms of the underlying efficacy of this treatment are not well understood. Therefore, investigation of DBS and its postoperative effects on brain architecture is of great interest. Diffusion weighted imaging (DWI) is an advanced imaging technique, which has the ability to estimate the structure of white matter fibers; however, clinical application of DWI after DBS implantation is challenging due to the strong susceptibility artifacts caused by implanted devices. This study aims to evaluate the feasibility of generating meaningful white matter reconstructions after DBS implantation; and to subsequently quantify the degree to which these tracts are affected by post-operative device-related artifacts. DWI was safely performed before and after implanting electrodes for DBS in 9 PD patients. Differences within each subject between pre- and post-implantation FA, MD, and RD values for 123 regions of interest (ROIs) were calculated. While differences were noted globally, they were larger in regions directly affected by the artifact. White matter tracts were generated from each ROI with probabilistic tractography, revealing significant differences in the reconstruction of several white matter structures after DBS. Tracts pertinent to PD, such as regions of the substantia nigra and nigrostriatal tracts, were largely unaffected. The aim of this study was to demonstrate the feasibility and clinical applicability of acquiring and processing DWI post-operatively in PD patients after DBS implantation. The presence of global differences provides an impetus for acquiring DWI shortly after implantation to establish a new baseline against which longitudinal changes in brain connectivity in DBS patients can be compared. Understanding that post-operative fiber tracking in patients is feasible on a clinically-relevant scale has significant implications for increasing our current understanding of the pathophysiology of movement disorders, and may provide insights into better defining the pathophysiology and therapeutic effects of DBS
Hestenes' Tetrad and Spin Connections
Defining a spin connection is necessary for formulating Dirac's bispinor
equation in a curved space-time. Hestenes has shown that a bispinor field is
equivalent to an orthonormal tetrad of vector fields together with a complex
scalar field. In this paper, we show that using Hestenes' tetrad for the spin
connection in a Riemannian space-time leads to a Yang-Mills formulation of the
Dirac Lagrangian in which the bispinor field is mapped to a set of Yang-Mills
gauge potentials and a complex scalar field. This result was previously proved
for a Minkowski space-time using Fierz identities. As an application we derive
several different non-Riemannian spin connections found in the literature
directly from an arbitrary linear connection acting on Hestenes' tetrad and
scalar fields. We also derive spin connections for which Dirac's bispinor
equation is form invariant. Previous work has not considered form invariance of
the Dirac equation as a criterion for defining a general spin connection
Dynamical description of the buildup process in resonant tunneling: Evidence of exponential and non-exponential contributions
The buildup process of the probability density inside the quantum well of a
double-barrier resonant structure is studied by considering the analytic
solution of the time dependent Schr\"{o}dinger equation with the initial
condition of a cutoff plane wave. For one level systems at resonance condition
we show that the buildup of the probability density obeys a simple charging up
law, where is the
stationary wave function and the transient time constant is exactly
two lifetimes. We illustrate that the above formula holds both for symmetrical
and asymmetrical potential profiles with typical parameters, and even for
incidence at different resonance energies. Theoretical evidence of a crossover
to non-exponential buildup is also discussed.Comment: 4 pages, 2 figure
Nonparabolicity effects and the spin-split electron dwell time in symmetric III-V double-barrier structures
We start from the fourth order nonparabolic and anisotropic conduction band bulk dispersion relation to obtain an one-band effective Hamiltonian which we apply to an AlGaSb symmetric double-barrier structure with resonant energies significantly (more than 200meV) above the well bottom. The spin-splitting is described by the k3 Dresselhaus spin-orbit coupling term modifying only the effective mass of the spin eigenstates in the investigated structure. Apart from the bulk-like resonant energy shift due to the band nonparabolicity, we obtain a substantial shift depending on the choice of boundary conditions for the envelope functions at interfaces between different materials. The shift of resonant energy levels leads to the change of spin-splitting and the magnitude of the dwell times. We attempt to explain the influence of both the nonparabolicity and boundary conditions choice by introducing various effective masses
Switching the stereochemical outcome of 6-endo-trig cyclizations; Synthesis of 2,6-Cis-6-substituted 4-oxopipecolic acids
A base-mediated 6-endo-trig cyclization of
readily accessible enone-derived α-amino acids has been
developed for the direct synthesis of novel 2,6-cis-6-
substituted-4-oxo-L-pipecolic acids. A range of aliphatic and
aryl side chains were tolerated by this mild procedure to give
the target compounds in good overall yields. Molecular
modeling of the 6-endo-trig cyclization allowed some insight as
to how these compounds were formed, with the enolate
intermediate generated via an equilibrium process, followed by irreversible tautomerization/neutralization providing the driving force for product formation. Stereoselective reduction and deprotection of the resulting 2,6-cis-6-substituted 4-oxo-L-pipecolic acids to the corresponding 4-hydroxy-L-pipecolic acids was also performed
- …
