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ARTICLE INFO ABSTRACT

Deep brain stimulation (DBS) for Parkinson's disease (PD) is an established advanced therapy that produces
therapeutic effects through high frequency stimulation. Although this therapeutic option leads to improved
clinical outcomes, the mechanisms of the underlying efficacy of this treatment are not well understood.
Therefore, investigation of DBS and its postoperative effects on brain architecture is of great interest. Diffusion
weighted imaging (DWI) is an advanced imaging technique, which has the ability to estimate the structure of
white matter fibers; however, clinical application of DWI after DBS implantation is challenging due to the strong
susceptibility artifacts caused by implanted devices. This study aims to evaluate the feasibility of generating
meaningful white matter reconstructions after DBS implantation; and to subsequently quantify the degree to
which these tracts are affected by post-operative device-related artifacts.

DWI was safely performed before and after implanting electrodes for DBS in 9 PD patients. Differences within
each subject between pre- and post-implantation FA, MD, and RD values for 123 regions of interest (ROIs) were
calculated. While differences were noted globally, they were larger in regions directly affected by the artifact.
White matter tracts were generated from each ROI with probabilistic tractography, revealing significant dif-
ferences in the reconstruction of several white matter structures after DBS. Tracts pertinent to PD, such as
regions of the substantia nigra and nigrostriatal tracts, were largely unaffected.

The aim of this study was to demonstrate the feasibility and clinical applicability of acquiring and processing
DWI post-operatively in PD patients after DBS implantation. The presence of global differences provides an
impetus for acquiring DWI shortly after implantation to establish a new baseline against which longitudinal
changes in brain connectivity in DBS patients can be compared. Understanding that post-operative fiber tracking
in patients is feasible on a clinically-relevant scale has significant implications for increasing our current un-
derstanding of the pathophysiology of movement disorders, and may provide insights into better defining the
pathophysiology and therapeutic effects of DBS.
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Postoperative imaging
Clinical feasibility
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Diffusion weighted imaging
Tractography

Susceptibility artifact
Parkinson's disease

1. Introduction

High-frequency deep brain stimulation (DBS) is a surgical tech-
nique, which sends electrical pulses to the brain through permanently
implanted electrodes. Electrodes are placed using stereotactic methods
based on imaging studies combined with real-time intraoperative
imaging or electrophysiology (Madler and Coenen, 2012). This tech-
nique is used to treat, among other refractory diseases, the debilitating
motor symptoms of advanced Parkinson's disease (PD). DBS is typically
offered when a patient's symptoms are not well controlled with

medication alone. The procedure's therapeutic effects involve modula-
tion of basal ganglia circuits, although the exact mechanisms of action
remain unknown (Okun, 2014). Despite DBS becoming a widespread
treatment, uncertainties remain regarding which circuits are affected,
which neural populations need to be targeted, and what is the most
efficacious stimulation protocol. (Lozano et al., 2019)
Diffusion-weighted imaging (DWI) can be used to study brain mi-
croarchitecture in PD patients (Zhan et al., 2013). Specifically, this
advanced imaging technique uses the diffusion of water molecules to
generate contrast in MRI images and can be used to estimate white
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Nomenclature

CC corpus callosum

DBS deep brain stimulation

PD Parkinson's disease

ROI region of interest

DWI diffusion-weighted imaging
FA fractional anisotropy

MD mean diffusivity

RD radial diffusivity

MRI magnetic resonance imaging
MPRAGE magnetization-prepared-rapid-acquisition-gradient-echo
TR repetition time

TE echo time

FOV field of view

SAR specific absorption rate
AAL AUTOMATED Anatomical Labeling
GPi globus pallidus pars interna
STN subthalamic nucleus

STR striatum

SN substantia nigra

ATAG  atlas of the basal ganglia
DN dentate nucleus

SNR signal-to-noise ratio

CNR contrast-to-noise ratio

matter tracts of the brain (Coenen et al., 2012). The most commonly
used values for clinical studies include fractional anisotropy (FA), mean
diffusivity (MD), and radial diffusivity (RD). Changes in these values
may indicate changes in neuronal pathology and therefore, allow for
the quantitative assessment of white matter fibers in selected brain
regions with only a few summarizing values (Feldman et al., 2010;
Zheng et al., 2014; Vaillancourt et al., 2009). FA is a scalar value be-
tween zero and one that describes the degree of anisotropy of a diffu-
sion process, the degree of which is thought to reflect fiber density,
axonal diameter, and myelination. Similarly, MD is a summary measure
of the diffusion properties of a given voxel, and equivalent to the es-
timated ADC over three orthogonal directions. Lastly, RD is a measure
of the two small axes tensors which are averaged to produce a per-
pendicular diffusivity. Together, these measures are thought to reflect
pathological processes including membrane integrity, myelination, and
axonal density (Ozarslan et al., 2005). DWI, therefore, has the potential
to serve as a tool capable of monitoring changes in specific white matter
tracts thought to be relevant to PD (Chen et al., 2018).

Currently, post-operative imaging of patients with implanted elec-
trodes is most commonly used to confirm electrode location and screen
for radiographic evidence of complications (Saleh et al., 2016). Clinical
application of DWI post-DBS is currently limited due to the production
of susceptibility artifacts from lead placement (Pollo et al., 2004). As a
result, the few studies that have performed postoperative imaging
analysis in DBS patients are limited by small sample sizes, a lack of
clinical application, or a lack of DWI (Saleh et al., 2016; Coenen et al.,
2011). This gap in investigation may be attributed, in part, to concerns
regarding the safety of postoperative DWI or to a general perception
that susceptibility artifacts will render post-operative imaging useless.
Therefore, there is neither a consensus on the most efficient post-op-
erative imaging methodology, nor is there any standardization for au-
tomatic or manual analysis (Saleh et al., 2016). No study to date has
specifically analyzed diffusion scalars or the resulting tractography in
postoperative DBS patients imaged with a clinically feasible protocol.

In the present study, we aim to evaluate the feasibility of post-
operative DWI analysis and white matter reconstruction, using patients
who have been scanned with clinically feasible scanning parameters.
We set out to retrospectively explore and quantify the effects of sus-
ceptibility-induced artifacts on DWI metrics in patients imaged after
DBS implantation. Quantification of these effects serves as a step to-
wards our ability to better understanding the anatomical white matter
changes that occur in response to treatment, ultimately providing in-
sight into the therapeutic mechanisms behind DBS.

2. Methods

This study was performed under the approval of the local

institutional review board. All patients consented to pre and post-op-
erative imaging as part of routine clinical practice.

2.1. Image acquisition

All patients underwent preoperative magnetic resonance imaging
(MRI) for pre-surgical evaluation and to plan the DBS procedure. All
pre-operative neuroimaging of patients was performed under a stan-
dardized general anesthetic protocol, in order to eliminate movement.
A standardized protocol of induction medications, percent sevoflurane
concentrations, hemodynamic parameters (i.e. mean arterial pressure),
and respiratory parameters (i.e. end tidal CO2, respiratory rates, oxygen
concentration, tidal volumes) was instituted for all scans. Based on
clinical indications, eight patients were scanned pre-operatively on a
3 T Philips Achieva scanner with an 8-channel head coil, while one
patient was scanned pre-operatively on a 1.5 T Philips Achieva scanner
using a birdcage RF transmit-receive coil. For the purpose of DBS tra-
jectory planning, patients underwent a T1-weighted scan, a T2-
weighted scan, and proton density weighted images. T1-weighted
structural scans were based on a magnetization-prepared-rapid-acqui-
sition-gradient-echo (MPRAGE). Imaging parameters of the MPRAGE
sequence included an isotropic resolution of 1.0 X 1.0 mm with a slice
thickness of 1.0 mm, repetition time (TR) = 7.0 ms, echo time
(TE) = 3.0 ms, flip angle = 9°, matrix size = 512 x 512, field of view
(FOV) = 25 cm. T2-weighted and proton density weighted images were
acquired using a dual spin echo with turbo spin echo sequence for
delineating targets of DBS. Imaging parameters of this sequence in-
cluded an isotropic resolution of 2.0 x 2.0 mm with a slice thickness of
20 mm, TR = 524 s, TEl = 16 ms, TE2 = 80 ms, matrix
size = 256 x 256, FOV = 24 cm. Diffusion images were acquired for
tractography. Patient's then underwent targeted DBS surgery within
2-3 weeks after image acquisition.

After surgery, additional post-operative imaging was acquired to
verify appropriate electrode position. As part of standard clinical
practice, post-operative imaging was acquired within 24 h of the sur-
gery, and was taken on average 15 days after the pre-operative scan
(Table 1). All post-operative neuroimaging was performed in the ab-
sence of anesthesia, as there was no clinical justification or ethical ra-
tionale for the post-operative induction of anesthesia given the primary
goals of confirming electrode location and assessment for any post-
operative complications. Patient demographics can be observed in
Table 1.

All nine post-implantation scans were acquired on a 1.5 T Philips
Achieva scanner using a birdcage RF transmit-receive coil within 24 h
of implantation of bilateral DBS electrodes (3387 or 3389 lead,
Medtronic; Minneapolis, MN) and an anterior chest wall implantable
pulse generator (Activa PC, Medtronic; Minneapolis, MN). To ensure
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Table 1
Time between image acquisition and post-operative scan (surgery date), as well
as patient demographics.

n=9
Days between pre and post-operative scan 183 = 5.0
Age (y) 67.6 * 7.3
Sex (M:F) 6:3
Disease duration (y) 81 + 25
Target (GPi:STN:VIM) 6:2:1
Laterality (B:L:R) 9:0:0
Preoperative scan (3 T:1.5 T) 8:1

patient safety, SENSitivity encoding factor was turned off, and the DBS
device was turned off. The post-operative scans followed an identical
imaging protocol as the pre-operative imaging, with the specific ab-
sorption rate (SAR) values reduced to 0.1 W/kg or less to adhere to
Medtronic safety guidelines (http://manuals.medtronic.com/manuals/
mri/region) for imaging patients with DBS systems. While anatomical
scans were required as part of each patient's clinical care, the diffusion
sequences were added for purposes of this study. Imaging parameters
for all 3 T preoperative and 1.5 T post-operative DTI scans can be seen
in Table 2.

2.2. Image pre-processing

Diffusion data underwent motion and eddy current correction using
the diffusion MRI Artefact Correction In Diffusion toolbox (http://www.
diffusiontools.com/). To minimize eddy current and effects of motion,
all DWI were registered onto the b0 image using a co-registration
function utilizing affine-transforms. Larger transforms were required
for the post-operative images to mitigate the head motion that occurred
due to a lack of anesthesia. Pre- and post-operative FA, MD, and RD
maps were created using Camino Software (http://camino.cs.ucl.ac.uk/
). Scalar DTI values for each region within each patient were calculated
by averaging the FA, MD, and RD values within each ROI individually,
and were calculated for both pre- and post-operative scans.

2.3. Region of interest selection

To analyze whole-brain structures, both pre- and post-operative FA,
MD, and RD maps for each individual subject were partitioned into 116
ROIs according to the Automated Anatomical Labeling (AAL) atlas
(Mestres et al., 2000). Additionally, bilateral globus pallidus pars in-
terna (GPi), subthalamic nucleus (STN), striatum (STR), and substantia
nigra (SN) were registered to each patient using the data sets available
from the atlas of the basal ganglia (ATAG) project (Keuken and
Forstmann, 2015). Similarly, atlas registration of the dentate nucleus
(DN) was performed for each patient using the quantitative suscept-
ibility mapping based on the dentate nucleus atlas developed by
(https://can.ucr.edu/software.html) HYPERLINK " He et al. (2017). The
FreeSurfer analysis suite (http://surfer.nmr.mgh.harvard.edu), was
used to automatically parcellate cortical regions of T1-weighted images
based on patient anatomy, specifically for the extraction of the region of
the corpus callosum (CC), since this region is not included in the AAL
nor the ATAG atlases. A total of 127 structures were delineated from
each subject.

2.4. Signal-to-noise and motion analysis

Measurements of signal-to-noise ratio (SNR) and contrast-to-noise
ratio (CNR) were obtained and averaged across volumes of the artifact-
corrected diffusion images. SNR was defined as the mean of the pa-
tient's gray matter voxels (Meangy) over the standard deviation of air
(Standard Deviationag):
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_ Meangy,
Standard Deviationag (@D)]

Whereas CNR measurements were defined as the mean of the pa-
tient's gray matter voxels subtracted by the mean of the patient's white
matter voxels, over the standard deviation of air:

CNR = Meangy — I\/{ea.nWM
Standard Deviationag 2

2.5. Artifact segmentation and analysis of effected regions

Susceptibility-induced artifacts were manually segmented by visual
inspection of the regions containing signal dropout on the b0 images for
each patient. Previously defined ROIs that included these manual seg-
mentations were considered to be “affected” and the remainder of
structures, which did not include the electrode artifact were labeled
“unaffected.” Affected structures were grouped and analyzed against
unaffected structures for all diffusion metrics.

Head motion parameters were extracted from the preprocessing
motion-correction step using MATLAB. The severity of motion between
both the pre- and post-operative scans were analyzed by averaging the
amount of translation and rotation in the x, y, and z-directions, and
compared between scans.

2.6. Regional statistical analysis

A within-patient analysis was performed to quantify the differences
between preoperative and postoperative images. Statistical differences
between pre- and post-operative FA values were calculated within each
ROI of the AAL atlas, STN, GPi, SN, and CC for each subject. A two-
sample Kolmogrov-Smirnov test was performed to test whether or not
the voxels within each ROI contained a similar distribution within each
ROL. If the two-sample Kolmogorov-Smirnov test rejected the null hy-
pothesis, a paired Wilcoxon Signed Rank test was used to assess whe-
ther the population mean ranks differ. If the samples were from a si-
milar distribution, a paired t-test was used in order to determine
whether the mean of the variables were the same for the two groups,
and a confidence interval for the true population was determined.
Analogous subgroup analyses were performed specifically for affected
ROIs and unaffected ROIs in order to directly evaluate the effect of
implant artifacts. Particular attention was paid to regions of the SN and
CC, given their previously described importance in the assessment of PD
(Coenen et al., 2012).

Table 2

Pre- and post-operative DTI acquisition parameters for 8 of the 9 subjects (note
that one subject was scan pre-operatively using the 1.5 T Phillips Achieva
scanner).

DTI Acquisition Pre-operative Post-operative

Parameters

Scanner 3 T Philips achieva 1.5 T Philips achieva
scanner scanner

Anesthetic protocol Sevoflurane None

Field strength (T) 3 1.5

Directions 32 32

b-value 800 800

TR (ms) 12,000-14,000 25,000-28,000

TE (ms) 80 145

FOV (cm) 24 24

Matrix 120 x 120 120 x 120

Voxel 2X2X2 2X2x2

Parallel factor 2 2

Acquisition time (min) ~15 ~25
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2.7. Field strength analysis

The distribution of FA, RD, and MD values for all regions analyzed
(AAL atlas, STN, GPi, SN, and CC) were plotted for comparison for each
patient's pre- and post-operative scans (Fig. 2). Values were examined
for differences specifically caused by the changes in field strength.

2.8. Tractography

In order to resolve the issues of crossing fibers, a Markov Chain
Monte Carlo sample was built using a Bayesian Estimation of Diffusion
Parameters (BEDPOSTX) as implemented by FSL's diffusion toolbox.
Where the diffusion coefficient is modeled using a Gamma distribution,
with a maximum of two fibers per voxel. Probabilistic tractography of
the nigrostriatal, dentate-rubro-thalamic, and hyperdirect pathways
were performed using FSL's Probtrackx 2.0. For all subjects, each voxel
within the defined seed regions was seeded with 5000 streamlines that
migrated according to local probability density functions for both pre-
and post-operative DWI sequences. Streamlines seeded from the
striatum (STR), which contacted the substania nigra (SN) were retained
as estimates of the nigrostriatal pathway. Similarly, those which con-
tacted the dentate nucleus (DN) from the thalamus were retained as
estimates of the dentato-rubro-thalamic pathway. And those which
contacted the subthalamic nucleus (STN) from the precentral gyrus
were retained as estimates of the hyperdirect pathway (Behrens et al.,
2007).

The default settings of Probtrackx 2.0 were used with a setting of
5000 samples per voxel, a step length of 0.5 mm, a curvature threshold
of 0.2, and a “loopcheck” to ensure that no tracts were included that
doubled back on themselves. The “classification target” option was
chosen, in which the STR, thalamus, and cortical areas were set as the
seed masks; and the SN, DN, and STN were set as classification targets,
respectively. A value representing the number of streamlines propa-
gating from the seeded regions to the classification targets was calcu-
lated for each voxel in this manner. As such, the resulting output map
represents the robustness of the fiber tract as described by the prob-
ability of its existence in a particular voxel between the seed region and
classification target (Behrens et al., 2003).
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Two previously-described variables of connectivity were then cal-
culated to represent the robustness and likelihood of a tract re-
construction (Theisen et al., 2017):

index of connection probability
2. probability of connection to the classification target

> total number of voxels in seed mask 3)

>, number of nonzero voxels in resultant map

streamline density =
4 Y, total number of voxels in seed map

4
Probability values, generated by Probtrackx 2.0, were analyzed
within the termination mask (STN, DN, and SN) of each patient's in-
dividual tractography results on a voxel-by-voxel basis. These measures
were calculated for both pre- and post-operative scans for the three
aforementioned tracts in all subjects. Aside from the index of connec-
tion probability and the streamline density, a voxel-wise significance
test was performed to the scalar values of pre- and post-operative
connection probability values within each target ROI (STN, DN, and
SN) using a two-tailed heteroscedastic t-test. Findings of a p value >
0.05 were considered significantly similar. A pipeline of the post-op-
erative analysis can be seen in Fig. 1.

3. Results
3.1. Motion and signal-to-noise

All subjects had more motion in the un-anesthetized postoperative
scan, than in the anesthetized preoperative scan. On average, motion
artifacts of the postoperative scans were 3.43 times larger than that of
the motion distortion in the preoperative scans, with postoperative
scans having a translation of 0.56 + 1.06 and preoperative scans
having a translation of 0.16 = 0.35 during motion correction
(Appendix A.1).

SNR and CNR of the postoperative scans were greatly reduced, with
the postoperative SNR (8.26 = 0.54) being approximately 300 times
less than that of preoperative SNR (324.56 = 255.35) (Appendix A.2).
Similarly, the postoperative CNR (—0.01 =* 0.22) was found on

1

(C) Pr-operative tracts

T— 1 1
o

o
B e

S

(B) Post-operative fractional anisotropy

Fig. 1. Flowchart of pre and post-operative analysis. The T1 image of the single-subject template in subject space (A) was registered in the pre and post-operative b0
image of each subject in their native space (B) with the transformation T. The atlas labels were transferred to the native space with the transformation T. (C) and (D)
show both the pre and post-operative FA map and tractography results in native space, respectively. Pre and post-operative DTI scalars and tractography were

compared and analyzed for differences (E).
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average to be 35 times less than that of the preoperative CNR
(12.29 + 10.08) (Appendix A.3).

3.2. Diffusion scalar results

Post-operative FA, throughout the brain were found to be con-
sistently higher across all subjects, whereas MD and RD values seemed
to have similar distributions between pre and post-operative scans.
Whereas all postoperative values of FA increased, 47.15% of MD and
57.99% of RD values were found to be lower postoperatively relative to
the preoperative scan (Fig. 2).

FA was found to be postoperatively higher relative to the pre-
operative values for all ROI across subjects: 95.56% of structures were
found to have different underlying distributions in FA. Of the structures
with different distributions, the Wilcoxon rank test determined that
2.63% came from distributions with equal medians (p > 0.05). Of the
4.44% of structures with similar distribution, 77.08% of these were
found to have equal means (t-test p > 0.05). For RD, 93.15% of
structures were found to have different underlying distributions with
approximately half of all structures (58.61%) having relatively lower
values in the postoperative scan when compared to the preoperative. Of
the structures with different distributions, 26.27% had equal medians
(p > 0.05), and of those with similar distributions, 98.65% had equal
means (t-test p > 0.05). For MD, 93.15% of structures were found to
have different underlying distributions with 47.50% of regions having
MD values lower in the postoperative scan. Of the regions containing
different distributions, 27.97% had equal median distributions
(p > 0.05), and of the structures with similar distribution, 94.59%
contained equal means (t-test p > 0.05). The results of the voxel-wise
scalar analysis for the SN and CC for all patients, as well as the percent
change for statistically different structures, are displayed in Table 3.

3.3. Regional susceptibility artifact results

Approximately 20.05% of ROIs across all patients contained sus-
ceptibility artifacts. Artifact was found to be generated by the connector
to the DBS extension, resulting in signal loss observed over the occipital
lobe (Fig. 3). Of the structures were which affected by artifact, 97.75%
were found to have different distributions in FA as tested by the two-
sample Kolmogorov-Smirnov goodness-of-fit hypothesis test. Only
1.99% of affected structures were found to have similar means
(p > 0.05), with 60% of the structures having similar distributions
coming from equal means (t-test p > 0.05). For MD 98.65% of struc-
tures had different distributions, 26.92% of which had similar means
(p > 0.05), with only 3 total structures having both similar distribu-
tions and equal means (t-test p > 0.05). For RD 97.75% had different
distributions, 25.84% of which had similar means (p > 0.05), with the
5 total structures of similar distributions having equal means (t-test
p > 0.05).
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3.4. Tractography results

The index of connection probability and streamline density average
across subjects for both the pre-op and post-operative scans, as well as
the percent change can be seen in Table 3. Detection of the nigrostriatal
pathway appeared to be the least affected, with 6 of the 9 patients
having a significantly similar reconstruction of the pathway in either
the left or right hemisphere (p > 0.05). This finding is in concordance
with lower percent changes in the index of connection probability and
streamline density in the nigrostriatal pathway. For the dentato-rubro-
thalamic and the hyperdirect pathways, only three subjects demon-
strated significantly similar tract reconstructions (Table 4(C)). Visuali-
zation of pre and post-operative tractography within a single subject
(scanned pre-operatively at 3 T and post-operatively at 1.5 T) are dis-
played in Fig. 4.

4. Discussion
4.1. Safety in post-operative diffusion imaging

Despite potential hazards involved when exposing a patient with DBS
to MRI, MRI provides the benefit allowing both electrode and artifact, and
the intended target to be visualized on the same image, and is therefore
preferable for verification of lead location in a clinical setting (Zrinzo et al.,
2011; Hariz et al., 2003; Petersen et al., 2010; Tisch et al., 2007). All
patients in this study were able to safely undergo MRI scans, including
diffusion sequences, as the field strength and SAR were restricted ac-
cording to manufacturer- and FDA-delineated parameters of 1.5 T and
0.1 W kg™, respectively. While these parameters are specific to the system
used in this study, device manuals typically provide instructions on how
MRI can be conducted safely after implantation of DBS electrodes
(Medtronic, 2007) and are relatively comparable. Ultimately, the number
of reported MRI-related adverse events is surprisingly low, with the only
adverse event reported in regard to 1.5 T scanning to be related to an
implant malfunction (Tagliati et al., 2009). While advancements have been
made towards demonstrating the feasibility of low SAR imaging of DBS
patients at 3T using patient-derived FEM models with realistic device
configurations (Kazemivalipour et al., 2019). However, diffusion proper-
ties of tissues are independent of field strength, since water diffusion is not
influenced by the magnetic field, making diffusion imaging methods well-
suited for research studies which combine data from varying field
strengths (Alexander et al., 2006). A study by Hunsche et al. performed on
seven healthy volunteers, compared values of diffusivity and FA using
varying field strengths of 1.5 and 3.0 T and did not yield any significant
differences in FA and MD (Hunsche et al., 2001). In the current study,
however, it was observed that post-operative FA values at 1.5 T were
higher by an offset of about 1.5 times than that of the pre-operative FA
values scanned at 3 T (Fig. 2). This difference is likely attributable to the
sensitivity of DTI measurements to the lower image SNR and increased
motion associated with the postoperative scans.
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10.0
6
75
4
5.0
: 25
0l — : - - — — 0 l——= r . - . - - 00 L=t T , . . T -
01 02 03 04 05 06 07 08 0.00 0.05 010 015 020 0.25 030 035 0.00 0.05 010 015 0.20 025 030 035

Fractional Anisotropy (FA)

Mean Diffusivity (MD)
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Fig. 2. Distribution of pre- and post-operative of fractional anisotropy (A), mean diffusivity (B), and radial diffusivity (C) values across for 8 subjects for all 123

structures, excluding the subject scanned pre-operatively at 1.5 T.
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Table 3
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Scalar analysis for diffusion metrics displayed for all subjects. If the two-sample Kolmogorov—-Smirnov test determined that the values were drawn from a similar
distribution, an unpaired t-test was performed. If the distribution was different, a Wilcoxon Signed Rank test was performed. P-values are reported for left and right

SN, and CC for all patients across metrics.

Case no. FA, MD, and RD analysis in the SN and CC across subjects

FA RD MD

T-test (P-value)[CI] Signed-rank (P-value) T-test (P-value) [CI] Signed-rank (P-Value) T-test (P-value) [CI] Signed-rank (P-value)
1.SNL 0.957 [—0.054,0.052] 0.198 0.013
SN R 0.350 0.084 0.047
cC 0.531 0.119 < 0.001
2.SN L < 0.001 < 0.001 0.017
SN R < 0.001 0.030 0.603
CC < 0.001 < 0.001 0.005
3.SNL 0.196 0.423 < 0.001
SN R 0.835 0.026 < 0.001
CC 0.591 0.630 0.245
4SN L 0.003 0.062 [—0.004,0.153] 0.292 [-0.032,0.107]
SN R 0.016 0.021 0.305
cC < 0.001 < 0.001 < 0.001
5.SN L 0.756 0.101 0.035
SN R 0.357 0.470 0.146
cC 0.567 [—0.050,0.027] 0.038 [0.005,0.182] < 0.001
6.SN L 0.053 [-0.001,0.123] 0.034 [-0.353,—0.14] 0.064 [—0.319,0.009]
SN R 0.010 [-0.121,0.011] 0.556 [—0.194,0.107] 0.323 [-0.214,0.071]
cC 0.743 [—0.045,0.032] 0.550 [—0.114,0.061] 0.079
78N L 0.051 [-0.071,0.035] 0.223 [—-0.171,0.040] 0.493
SN R 0.643 [—0.035,0.056] 0.556 0.940
cC 0.036 0.056 [—0.186,0.002] 0.094
8SNL 0.002 0.317 0.550
SN R 0.820 0.767 0.189
cC < 0.001 < 0.001 < 0.001
9.SN L 0.016 0.135 0.350
SN R 0.006 0.128 0.625
cC < 0.001 0.056 0.166

4.2. Motion, SNR, and CNR analysis

In typical MRI imaging, the SNR can be approximated as propor-
tional to magnetic field strength. Due to the change in field strength, we
confirmed the assumption that SNR and CNR of post-operative DWI
decreases as a result of the artifact. Low SNR in DTI may cause esti-
mated eigenvalues and anisotropy to be biased, leading to an over-
estimation of diffusion anisotropy and an overall increase in scalar
values. Both SNR and CNR were greatly reduced in the post-operative
scans. Low SNR may contribute to the sudden observed changes in post-
operative FA, as low SNR has been found to increase noise and decrease
contrast between gray and white matter in DTI-derived FA images
(Farrell and Landman, 2007). While this serves as a limitation for this
study, it also increases its clinical applicability, as most pre-operative
imaging necessitates a 3 T scan, while post-operative imaging is limited
to 1.5 T. The data presented herein emphasizes the need to account for
the effects of experimental noise in assessing anisotropy of individual
eigenvalues of the diffusion tensor, particularly when comparing mea-
surements from different field strengths, where considerable changes in
SNR occurs. Knowledge of the SNR and CNR measurements in white
matter regions can be used to eliminate noise bias and estimate true
anisotropy (Mukherjee et al., 2002). The affects of field strength be-
tween 3 T and 1.5 T on diffusion metrics in normal adults have been
well described in previous publications, and have described that while
in theory diffusion metrics should not be influenced by field strength,
nonlinear changes do occur (Polders et al., 2011;Kosior et al., 2007;
Alexander et al., 2006; Hunsche et al., 2001). Specifically, a within-site
examination of diffusion values found that FA can generally be con-
sidered reproducible within each site (Helmer et al., 2016).

In addition to experimental noise, motion, whether physiological or
patient, is a major source of error in MRI and has been shown to sig-
nificantly impact estimation of FA values (Middleton et al., 2014). As
observed by the motion analysis performed on pre- and post-operative
DWI images, post-operative motion is significantly larger when

compared to that of the anesthetized pre-operative scan. Even small
amounts of motion have been shown to cause large signal variations,
affecting the reproducibility and precision of DTI data and subsequently
derived MD and FA maps (Tijssen et al., 2009). In past studies, retro-
spective head motion correction has been shown to alter the estimation
of scalar metrics used in clinical DWI studies, along with across-session
reproducibility errors (Kreilkamp et al., 2016). Taking into account
head motion variation is essential for a more accurate estimation of
DWI measures, particularly when comparing anesthetized versus un-
anesthetized scans.

Similar to the limitation of field strength, this study reflects what
most centers would be able to accomplish with postoperative imaging
and puts an emphasis on clinical feasibility and generalizability across
centers. When attempting post-operative DWI, the effects of field
strength, coil geometry, and motion correction, should all be considered
as major contributors to differences between the pre- and post-opera-
tive scans.

4.3. Role of diffusion imaging in Parkinson's disease

Careful monitoring of PD patients has led to important develop-
ments in our understanding of the disease and intervention. At the point
of clinical expression, it is approximated that nearly half of the dopa-
minergic cells in the SN are lost, allowing us to use DWI to provide an
indirect measure of degeneration within the SN, as the cell loss alters
microstructural integrity and diffusion of water molecules during dis-
ease progression (Vaillancourt et al., 2009). More specifically, PD has
been associated with characteristic regional patterns of degradation in
the SN, putamen, and thalamus, as well as the motor, premotor, and
supplementary motor cortices. A significant obstacle in understanding
the mechanism of action of DBS is the lack of a quantitative under-
standing of the extent and influence on the neural elements involved. It
is believed that changes in the underlying dynamics of stimulated brain
networks may be the main cause for the therapeutic results observed
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Fig. 3. Regional differences in FA, those with higher differences are shown to clearly intersect with susceptibility artifact. The yellow arrow indicates signal dropout
caused by the connection wire between the electrode and the implantable pulse generator.

Table 4
Tractography results.

(A) The connection probability index, as well as the maximum and minimum probability averaged across all seven subjects, for the nigrostriatal, dentate-rubro-

thalamic and hyperdirect pathway

(B) The streamline density averaged across subjects
(C) Statistical results for the connection probability for all subjects.

Index of connection probability®

Nigro striatal

Dentato-Rubro-Thalamic

Hyperdirect pathway

Pre-op Post-op Pre-op Post-op Pre-op Post-op

204.8 72.2 221.8 23.3 7.9 0.76
Percent change 64.8% 89.5% 90.4%
(A) Streamline density"

Pre-op Post-op Pre-op Post-op Pre-op Post-op

71.5 26.3 80.0 36.6 36.1 4.2
Percent change 63.2% 54.3% 88.4%
(A) T-test of connection probability Nigrostriatal Dentato-Rubro-Thalamic Hyperdirect pathway

Left Right Left Right Left Right
Subject 1 0.606* 0.179* < 0.001 < 0.001 < 0.001 0.013
Subject 2 0.106* < 0.001 < 0.001 < 0.001 0.001 < 0.001
Subject 3 < 0.001 0.311* < 0.001 < 0.001 < 0.001 < 0.001
Subject 4 0.0248 < 0.001 < 0.001 < 0.001 < 0.001 -
Subject 5 0.066* < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Subject 6 0.818* 0.690* < 0.001 0.616* 0.878* < 0.001
Subject 7 0.002 < 0.001 < 0.001 < 0.001 - < 0.001
Subject 8 < 0.001 0.027 < 0.001 < 0.001 0.072* 0.501*
Subject 9 0.117* 0.709* < 0.001 < 0.001 3.234e -7 0.094*

@ Mean number of samples that generate streamlines that reach the SN per seeded STR voxel, DN per seeded thalamus voxel, and STN per seeded cortical seed

voxel, averaged across subjects from pre to post-operative.

b percentage of voxels in the STR that generate one or more streamlines that reach the SN.

*p > 0.05.
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Fig. 4. Pre and post-operative tractography of the dentato-rubro-thalamic tracts of the hyperdirect pathway, and nigrostriatal tracts for a single subject (subject 3).

after DBS. (Kazemivalipour et al., 2019) These regional changes can be
detected by DTI and are associated with PD severity, varying with main
motor PD subtypes (Zhan et al., 2012). For example, the hyperdirect
pathway is a connection to the basal ganglia which is related to the
initiation, execution, and termination of voluntary limb movement

(Nambu et al., 2002). DTI tractography has been used to show that the
hyperdirect pathway connects the STN with cortical motor areas, and
may be readily reconstructed in patients with advanced PD
(Muller et al., 2019). These pathways and regions, rebuilt by DTI, can
help further elucidate the mechanisms of DBS and guide therapy
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(Chen et al., 2018). Although little is known about the mechanisms of
DBS, it appears that there is direct involvement of axonal fibers, rather
than gray matter, suggesting that both local and large networks are
being targeted (Ashkan et al., 2017). Recently, modulation of specific
brain regions and white matter tracts has been associated with im-
provements in particular PD subtypes and symptomologies
(Akram et al., 2017). These findings merit efforts towards the long-
itudinal tracking of postoperative DBS patients in order to associate
white matter network integrity with the long-term effects of DBS.

4.4. Diffusion scalar analysis

Although diffusion metrics within all structures appeared to be af-
fected by susceptibility artifacts, it is discernible that some regions are
significantly more affected than others, and that MD and RD were less
affected, having similar distributions when comparing the pre and
postoperative scans (Fig. 2). Larger changes in FA are to be expected as
this particular diffusion scalar measurement is most sensitive to mi-
crostructural change, as well as susceptibility artifact (Alexander et al.,
2011). Structures directly intersecting with the electrode artifact seg-
mentation were affected approximately three times more than those
which were not, including regions which were target sites for electrode
implantation (GPi, STN, and VIM). This can be attributed to intense
signal dropout. However, despite the large disparity in pre- and post-
operative FA values, major regions related to PD remained to be un-
changed, as can be viewed in Table 3, where a large portion of the
regions of the SN and CC were significantly similar across subjects.
Additionally, approximately half of the RD and MD values across all
brain regions and across all subjects were found to have no significant
change, indicating these scalar values are functional as biomarkers of
disease progression for diffusion analysis of patients who have under-
gone DBS.

The ability to continue to visualize the microarchitecture of parti-
cular brain regions proves useful for longitudinal tracking of post-op-
erative DBS patients, as it has been comprehensively suggested that
diffusion measures within the SN and CC may prove useful for tracking
disease progression (Menke et al., 2009). Specifically, it has been shown
that FA has the ability to distinguish between healthy subjects and de
novo PD individuals, particularly in the caudal region of the SN
(Vaillancourt et al., 2009), whereas RD has been seen to increase in the
corpus callosum, internal and external capsules, corona radiata, sagittal
stratum, fornix, and cingulum (Guimaraes et al., 2018). Previously,
several studies including Menke et al. (2009), Vaillancourt et al. (2009),
Schwarz et al. (2013), Lenfeldt et al. (2015), and others, have in-
vestigated diffusion measures within the SN as a potential biomarker
for PD (Lenfeldt et al., 2015; Menke et al., 2009; Schwarz et al., 2013;
Vaillancourt, 2009; Zhan et al., 2013). Therefore, proving our cap-
ability to continue to analyze post-operative diffusion metrics in these
particular regions is significant. In the past, the use of DWI has been
confounded by the presence of susceptibility artifacts from lead place-
ment. We report for the first time the feasibility of post-operative dif-
fusion analysis in nine patients with advanced PD. In this work, we
establish measures of reliability of specified tracts in the postoperative
setting for individual patients to determine whether or not a patient is
eligible for longitudinal evaluation by DTI. The results of this study
suggest the possibility of a follow-up analysis using advanced diffusion
parameters and tractography on post-operative DBS patients, a process
useful for the clinical correlation of DBS outcomes with anatomical
biomarkers (Danielian et al., 2010).

4.5. Tractography

Three specific tracts were chosen for analysis, based on their re-
levance to PD and their history as an area of interest for DBS. Overall, it
appears that structures not involving the cortex had the highest reten-
tion of tracts in postoperative imaging, with the nigrostriatal pathway
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being the best retained, followed by the DRT and the hyperdirect
pathway (Table 4).

The nigrostriatal pathway is an important connection of the basal
ganglia, which connects the SN with the dorsal striatum, and is parti-
cularly involved with control of motor behavior (Tritsch et al., 2012).
This pathway has been shown to degenerate in patients with PD as
dopaminergic connections are lost (Tan et al., 2015). We were able to
successfully delineate nigrostriatal tracts both pre- and post-operatively
in patients, with six out of the nine patients having significantly similar
probability of connection in at least one hemisphere. Moreover, the
largest retention in both index of probability and streamline density
were retained for the nigrostriatal pathway (Tables 4(A) and (B)),
which is notable as this measure has been shown to be promising in its
ability to distinguish PD subjects from healthy controls, and has been
indicated as a method useful for tracking longitudinal changes within
individuals (Theisen et al., 2017). The retention of this measure in post-
operative DBS imaging is of great interest, as we may continue to track
streamline density as a disease classifier as patients respond to therapy.

Additionally, it has been shown that modulation of the DRT is most
likely responsible for the physiological effect of DBS in the thalamic/
subthalamic region that leads to alleviation of tremor (Coenen et al.,
2011). The delineation of the white matter tract of the DRT may be
important for neurosurgeons during DBS in patients for tremor control.
Damage to this tract may be responsible for motor symptoms and may
lead to movement disorders such as ataxia or tremor (Hana et al.,
2016). In addition to the DRT, the hyperdirect pathway forms con-
nections between several cortical areas and the STN (Jahanshahi et al.,
2015). Both the DRT and hyperdirect pathway have been shown to be
responsible in the pathophysiology of tremor (Coenen et al., 2011;
Hammond et al., 2007).

While tracts of the DRT and the hyperdirect pathway were found to
be statistically different (p > 0.05) pre- to post-operatively for the
majority of patients, retention in streamline density and connection
index were moderately achieved, and reconstruction of both the DRT
and hyperdirect pathway proved to be feasible (Table 4 and Fig. 4). This
may be attributed to dramatic postoperative increase in FA, when
compared to MD and RD, creating a difficulty in fiber tracking, parti-
cularly in regions which intersected with electrode artifact. Therefore,
with more advanced improvements in diffusion-based techniques and
image post-processing, it is possible that the measures of streamline
density and connectivity index may prove useful for tracking long-
itudinal changes in these motor pathways within patients
(Theisen et al., 2017). Through quantification of the degree at which
these metrics have been affected by artifacts, a new baseline may be
recognized at which we can evaluate the degeneration and integrity of
the tracts months, or years, after therapy has been administered.

4.6. Delineation of error source and regional susceptibility artifact affects

While the purpose of this study was to prove the feasibility of post-
operative imaging, we aim to likewise quantify and identify sources of
disruption that would contribute to the changes observed in the quality
of post-operative DWI. Here we have distinguished three separate
contributing factors which may all contribute to the loss of diffusion
single including: differences in SNR/CNR, head motion, and electrode
artifact. While we have listed above the potential pitfalls of these
confounding factors, and the steps taken to correct for them when re-
lating diffusion metrics to the resulting clinical outcomes, it is ad-
vantageous to distinguish how much of the error is a result of the ac-
quisition parameters versus the electrode artifact. In the present study,
susceptibility artifacts caused by DBS electrodes and the connection
wires to the electronic pulse generator were manually segmented
(Fig. 1). It was found that the majority of structures which intersected
with these susceptibility artifacts for each particular subject had sig-
nificantly altered FA, MD, and RD values across patients, in both dis-
tributions and means. This supports the notion that any region
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intersecting with signal drop-out due to the implanted DBS system
cannot feasibly be reconstructed using DWI. This finding has not been
elucidated by previous work regarding signal noise interference caused
by susceptibility artifacts generated by implanted DBS systems. Artifact
delineation should be considered on a patient-to-patient basis, as con-
figuration of the electrode artifact will differ due to the trajectory of the
implanted electrode with respect to the scanning plane and the location
of the connection to the extension wire (Saleh et al., 2016).

It is believed that the general increase in post-operative FA occurs
globally in the brain due to the decrease in SNR, however the intense
signal dropout of the metal artifact allows us to distinguish which re-
gions are no longer able to be reconstructed due to distortions.
(Saleh et al., 2016) This was particularly of interest in regions of the SN
and CC, which are suitable biomarkers for disease progression
(Lenfeldt et al., 2015). Therefore, this advancement towards accurate
visualization of DWI is significant towards the critical interpretation of
clinical outcome.

4.7. Limitations and future work

Limitations of the current study beyond the scope of field strength,
motion artifacts, and post-operative SNR may also contribute to in-
accuracies when defining post-operative diffusion metrics. Variation
between pre- and post-operative scans may have been caused in part to
wide-ranging scanner noise and inhomogeneity between sessions, as
well as inaccuracies in post-processing such as misalignment of atlas
registration (Buchanan et al., 2014). It should be noted that these errors
created a systemic fairly consistent error across subjects, therefore in-
accuracies due to inaccurate registration was consistent between pa-
tients. To improve upon this, a more accurate method of structure de-
lineation such as manual segmentation or individualized cortical
parcellation may be warranted. This is to be balanced with the time
needed for manual segmentation, as well as the resolution of the DWI
sequence. To eliminate noise created by aforementioned sources of
error, a correction factor may be developed either through individual
subject or group normalization. This may be done through methods of
machine learning or other post-processing tools, and would drastically
increase the accuracy of fiber tracking should it be applied to post-
operative FA.

Additionally, all post-operative scans were performed using either a
Medtronic 3389, or for thalamic stimulation, a Medtronic 3387 DBS
electrode. Therefore, the results of this study may not be generalizable
and should be repeated for all DBS lead models. This includes the ap-
plication of varying safety regulations, since electrode artifacts may be
variable for different manufacturers and scanning protocols.

Lastly, efforts should be made towards the inclusion of SAR reduc-
tion performance in clinical practice for the accessibility of safely
imaging DBS patients at 3T.

4.8. Sample size and clinical outcomes

While the sample size for this dataset is small (n = 9), this dataset
remains the largest study to date in humans, as post-operative DWI is
rarely attempted or analyzed in post-DBS patients. This individualized
study aims to elucidate the feasibility of longitudinal diffusion analysis
for within-subject post-operative DBS patients, where variation in study
population and an increase in numbers is desirable. Since the statistics
generated in this feasibility study were not based on group analysis, the
sample size does not have a direct effect on the results of the analysis.
While beyond the scope of this study, we plan to scan these patients in a
delayed fashion, several months and years into the future, to assess the
ability of tracking differences in DBS patients longitudinally using DWI
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and correlate with the proceeding clinical outcomes.

Lastly, we understand that while correlation between DTI metrics
and patient outcomes are important and the basis of future work, such
analysis is beyond the scope of this study. The first step in bringing post-
operative DBS imaging into clinical practice is to quantify the degree at
which post-operative DWI are affected by artifacts as a means by which
the feasibility of its use can be quantified. By assuming that no changes
in anatomy have occurred within the < 15 day time period between pre
and post-operative imaging, changes in diffusion metrics can be at-
tributed solely to field strength/scanner/post-implant changes. In the
future, we hope to use the newly established baseline of DWI measures
to individually track disease progression in DBS patients, which will
then be correlated with clinical outcome. Through doing so, we may be
able to distinguish structural changes which occur during DBS therapy,
giving us a better understanding of how DBS works to reduce the
symptoms of PD and of the pathophysiology of brain networks as a
whole.

5. Conclusion

This pilot within-subject study demonstrates both the safety and
feasibility of pulse sequences previously thought to be inaccessible to
DBS patients, using a clinically reasonable timeframe. A unique dataset
of nine post-operative DBS patients was analyzed using advanced
probabilistic tractography to successfully reconstruct diffusion values of
structures known to be associated with PD. Given the changes induced
by changing field strength, SNR, and electrode artifact, it will be ne-
cessary to establish a new baseline if we are to longitudinally track
diffusion metrics in post-operative DBS patients. Despite recent devel-
opments in our understanding behind the pathophysiology of PD, DBS,
and its therapeutic effects, post-operative imaging for validation of
brain changes associated with symptom improvement in PD will largely
impact the field of functional neurosurgery. The benefits of developing
a non-invasive method for analyzing postoperative DBS patients in-
cludes an accurate interpretation of its clinical effects, understanding
the functionality of the stimulation targets, and ultimately elucidating
the mechanisms underlying DBS.
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Appendix A. Motion and signal analysis
A.1. Motion correction analysis
Fig. Al.

Motion Analysis
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Fig. Al. Results of the pre and post-operative motion correction analysis across subjects.

A.2. Signal-to-noise analysis

Fig. A2.
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Fig. A2. Results of the pre and post-operative signal-to-noise analysis across subjects, subject 5 scanned pre-operatively at 1.5 T.
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A.3. Contrast-to-noise analysis

Fig. A3.
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Fig. A3. Results of the pre and post-operative contrast-to-noise analysis across subjects, subject 5 scanned pre-operatively at 1.5 T.
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