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A parametric working memory network stores the information of
an analog stimulus in the form of persistent neural activity that is
monotonically tuned to the stimulus. The family of persistent firing
patterns with a continuous range of firing rates must all be realizable
under exactly the same external conditions (during the delay when
the transient stimulus is withdrawn). How this can be accomplished
by neural mechanisms remains an unresolved question. Here we
present a recurrent cortical network model of irregularly spiking
neurons that was designed to simulate a somatosensory working
memory experiment with behaving monkeys. Our model reproduces
the observed positively and negatively monotonic persistent activity,
and heterogeneous tuning curves of memory activity. We show that
fine-tuning mathematically corresponds to a precise alignment of
cusps in the bifurcation diagram of the network. Moreover, we show
that the fine-tuned network can integrate stimulus inputs over
several seconds. Assuming that such time integration occurs in
neural populations downstream from a tonically persistent neural
population, our model is able to account for the slow ramping-up and
ramping-down behaviors of neurons observed in prefrontal cortex.

Introduction
The physical world is described in terms of continuous (analog)
quantities, such as space, direction, time, velocity and
frequency. Through evolution, animals and humans must have
developed the mental ability not only to encode analog physical
quantities as sensory stimuli, but also to remember such quanti-
ties by virtue of an active internalized representation in working
memory. A basic question in neuroscience is how analog phys-
ical stimuli are represented and stored in memory in the brain.
Starting in the 1980s, neurophysiologists have investigated this
question, with a focus on spatial information. In a delayed
response task, an animal is required to remember the spatial
location of a sensory cue across a delay period of a few seconds.
Neurons in the parietal cortex (Gnadt and Anderson, 1989;
Chafee and Goldman-Rakic, 1998) and prefrontal cortex
(Funahashi et al., 1989; Rainer et al., 1998) show persistent
activity that is correlated with memory maintenance during the
delay period. Mnemonic neural activity is selective to spatial
locations, quantified by a bell-shaped tuning. That is to say, a
given neuron shows an elevated delay in activity only for a
relatively narrow range of positional cues, and the spatial
information is encoded by ‘what’ neurons fire significantly
during the memory period. A similar coding strategy is also used
by the neural system that encodes and predicts an animal’s head
direction (see Sharp et al., 2001; Taube and Bassett, 2003).

More recently, another form of working memory for analog
quantities was discovered in a somatosensory delayed response
experiment (Romo et al., 1999; Brody et al., 2003). In this task,
the monkey is trained to compare the frequencies of two vibro-
tactile stimuli separated in time by a delay of 3–6 s; therefore the

behavioral response requires the animal to hold in working
memory the frequency of the first stimulus across the delay
period. It was found that neurons in the inferior convexity of the
prefrontal cortex show persistent activity during the delay, with
the firing rate of memory activity varying monotonically with
the stimulus frequency. Therefore, the stimulus is encoded by
the firing rates at which all neurons discharge spikes. Similarly,
in the oculomotor system that maintains a fixed eye position
between quick saccades, persistent neuronal activity is propor-
tional to the eye position (Robinson, 1989; Aksay et al., 2000).
We emphasize that the meaning of tuning curve for delay period
activity is profoundly different from that of responses to sensory
inputs. Conventionally, the stimulus selectivity of neuronal
firing during stimulus presentation is quantified by a tuning
curve. For example, the higher the input intensity, the larger
the neural response. By contrast, in a working memory task,
the mnemonic neural activity is measured after the transient

stimulus is withdrawn, during the delay period. If a working
memory network exhibits a family of delay period activity that is
monotonically tuned to a feature of the transient stimulus, this
entire family of mnemonic activities with different firing rates
must be all realizable under exactly the same external conditions
(during the delay when external inputs are absent). How a
cortical network, for example in the prefrontal cortex, can be
capable of such a feat presents an intriguing open question in
neuroscience.

Persistent neural activity during working memory is generated
internally in the brain, either by recurrent circuit mechanisms
(Lorente de Nó, 1933; Goldman-Rakic, 1995) or by intrinsic
cellular mechanisms (Camperi and Wang, 1998; Egorov et al.,
2002). According to the attractor model of persistent activity
(Amit, 1995; Wang, 2001), a neural assembly has a resting state
at a low firing rate, as well as a stable active (‘attractor’) state at
an elevated firing rate that is self-sustained by reverberative
excitation. Recently, this idea has been extended to the realm of
working memory of an analog physical quantity, and tested
rigorously using biophysically based recurrent network models.
In models of spatial working memory, the spatial locations are
encoded by a continuum of ‘bell-shaped’ localized persistent
states (‘bump attractors’) (Camperi and Wang, 1998; Compte et

al., 2000; Gutkin et al., 2001; Tegnér et al., 2002; Ermentrout,
2003; Renart et al., 2003a). In neural integrators in the oculo-
motor circuit, persistent firing rate of each neuron varies linearly
with the gaze position (Cannon et al., 1983; Robinson, 1989). As
a result, if rates of different neurons are plotted against each
other, they fall on a straight line in the ‘firing-rate space’. This
observation led to the theoretical concept of ‘line attractors’
(Seung, 1996).

It was recognized (Cannon et al., 1983; Seung et al., 2000a,b)
that very fine tuning of synaptic feedback is necessary to create
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such monotonically tuned neural integrators in models. The
feedback must be finely tuned, so that if the firing rate of a
neuron is altered by a transient input, then the resulting change
in synaptic feedback to the neuron is exactly the amount
required to maintain the new firing rate. Any mis-tuning of the
feedback results in an exponential decay or growth of firing
rates away from the desired memory state to one of a few stable
levels. The drift occurs with a persistence time proportional to
the synaptic time constant divided by the fractional error in the
tuning (Seung et al., 2000b), such that synaptic weights must be
tuned to one part in a hundred if the desired network time
constant (10 s) is 100-fold longer than the synaptic time constant
(100 ms).

Koulakov et al. (2002) recently proposed a mechanism
without the fine-tuning requirement. The idea is to combine
many robust, bistable groups to form a system with multiple
stable states. If there are enough bistable units, which switch to
persistent active states following transient stimuli of different
strengths, the summation of neural units’ outputs will become
indistinguishable from a continuous quantity that encodes the
stimulus feature. Such an integrator or memory device is similar
to the stable digital memory of a computer (which can simulate
analog quantities). One salient feature of the Koulakov model is
that each individual neuron’s tuning curve of delay period
activity displays a significant jump in the firing rate between the
resting state and active memory states. Whether this prediction
is consistent with experimental data from neural integrators
(Aksay et al., 2000; Nakamagoe et al., 2000) remains unclear.

In this paper, we present a new model of persistent activity
monotonically tuned to an analog stimulus feature. Our model
was designed to reproduce the prefrontal neural activity in the
vibrotactile delayed matching-to-sample experiment (Romo et

al., 1999; Brody et al., 2003). Conceptually, this model is similar
to that of Seung et al. (2000a), and we present a mathematically
precise description of what is meant by the requirement of
network fine-tuning for this class of working memory models.
Furthermore, in order to apply our model to the prefrontal
cortex during parametric working memory, we elaborated on
existing models in several important ways. First, we used large
neural networks (12 000 neurons), appropriate for cortical
circuits, in contrast to the oculomotor neural models with only
tens of neurons. Secondly, our model has a locally structured
circuit architecture, whereas in Seung et al.’s model (Seung et

al., 2000a) synaptic connections are globally determined by a
gradient-descent optimization algorithm. Thirdly, noise is absent
in the models of Seung et al. (2000a) and Koulakov et al. (2002),
and the robustness of network behavior against noise was not
assessed. Cortical neurons receive a large amount of background
noise inputs, which are taken into account in our model.
Fourthly, in both integrator models (Seung et al., 2000a;
Koulakov et al., 2002), neurons are silent in the resting state. By
contrast, prefrontal neurons show spontaneous activity at low
rates prior to stimulus presentation, and our model reproduces
such spontaneous neural activity in the resting state. Fifthly, our
model includes both excitatory and inhibitory neural popula-
tions. Finally, we propose a two-network model that reproduces
both positively and negatively monotonic neurons which have
been observed experimentally in prefrontal neurons.

Materials and Methods

Network Architecture
Our network model represents a cortical local circuit composed of a
number (typically two sets of 12) of neural groups or ‘columns’ (Fig. 1).
The two halves of the network represent the two sets of cells that receive
either positively monotonic or negatively monotonic transient input
from neurons in S2 (Salinas et al., 2000). Each neural group (labeled by i
= 1, 2,..., 12; 1*,2*,..., 12*) contains 400 excitatory cells and 100 inhibi-
tory cells, so we simulate 12 × 2 × 500 = 12 000 cells in total. With such a
large number of neurons per column, the instantaneous firing rate of the
group is a meaningful quantity that encodes the information in the
network. Individual spike times are noisy, and any data for a single
neuron are only uncovered by averaging over many trials.

The connectivity from group j to group i, Wj→i, is structured such that
synaptic connections are stronger between cells within a column than
between two columns. The strong recurrent excitation within a column
means that each column is close to being bistable — that is, the self-exci-
tation within a column is not enough to raise the firing rate when all cells
are in the spontaneous state, but is almost enough to maintain a high
firing rate if the cells are given transient excitation. The strengths of
connections with other groups is key to the maintenance of higher firing
rates, and to obtaining a large number of different stable states. The
neurons within a column are all connected identically (all-to-all), so
receive identical recurrent input. They are only differentiated by the
background noise they receive.

The connection strength between two neural groups decays exponen-
tially with the difference in their labels, as shown in Figure 1 for the E-to-
E connections between excitatory cells. All connections with inhibitory
cells (E-to-I, I-to-E and I-to-I) are strongest within a column and decay
symmetrically between columns. The E-to-E network architecture has a

Figure 1. Schematic model architecture with asymmetric connectivity. Two mirror
networks of positively and negatively monotonic neurons receive transient input
respectively from positively and negatively tuned neurons in S2. Each network has an
excitatory pyramidal cell population (squares) and an inhibitory interneuron population
(circles). Neurons are divided into 12 groups per network. Synaptic connections are
stronger within the same group than between two groups. The connectivity is
asymmetrical, so that the activation threshold by stimulus is the lowest for neural
group 1 and highest for neural group 12. Populations of inhibitory interneurons are
shown as circles. The two networks interact through pyramid-to-interneuron
connections, resulting in cross-inhibition. See text for more details.
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‘high-to-low’ asymmetry, in the sense that if j > i, then Wi→j < Wj→i. This
results in a gradient of effective excitability across the network, with the
groups with the lowest labels being most excitable. Such a distribution of
excitability is important for the network to show a graded response to a
range of stimuli.

A fixed gradient of intrinsic thresholds (produced by a range of leak
conductances for example) can be used to generate a range of excitabili-
ties to external stimuli. Both Koulakov et al. (2002) and Seung et al.

(2000a) used such a network. Koulakov et al. included symmetric
connectivities between neurons of differing thresholds, but with very
low strength, such that the feedback to a neuron within a group was
significantly greater than the feedback to a neuron from its effect on
other neurons with different thresholds. Hence, the concept of Koulakov
et al.’s network is one of a discrete set of bistable groups, each of which
switch to an excited state following a different magnitude of input.

In Seung et al.’s network, far more feedback comes to a cell through
its connections to other cells (apart from the most excitable cell, which
is bistable while all others are silent). In Seung et al.’s line attractor
network, asymmetrical connections are necessary, with stronger
synaptic weights from low- to high-threshold neurons. This is because
the whole network is designed to have a linear input–output relation.
When just one cell (the lowest threshold) is firing, the change in output
comes solely from that cell, so connections from that cell are strong.
When all neurons are firing, the same change in input causes all cells to
increase in output. For the total change in output to be the same, the
output from higher threshold cells must be progressively smaller. Hence
high-to-low connections are weaker than low-to-high.

In all three cases, a range of excitabilities is used to ensure that a wide
range of inputs leads to different responses in the network. A single bist-
able group of neurons can only distinguish whether a stimulus is greater
or lower than its single threshold. A range of thresholds allows for more
stimuli to be distinguished. In the prefrontal cortex, it is unlikely that
there are columns or neural groups with large systematic differences in
their intrinsic excitability. Hence we use systematic differences in the
synaptic strengths between populations (which are readily altered
through learning mechanisms) to create groups of neurons that require
different strengths of stimulus for their firing rate to deviate strongly from
their spontaneous rate. Such a network results in stronger connections
from higher threshold to lower threshold neurons. This is evident, as it is
the extra excitation arising from the stronger synaptic weights from
higher-threshold populations that causes low-threshold populations to
be more readily excited by external input. Since silent cells cannot influ-
ence the activity of other cells, however strong the connections, this
effect is absent without spontaneous activity. Such is the case in the
other models (Seung et al., 2000a; Koulakov et al., 2002).

Our complete model contains two such networks connected by recip-
rocal inhibition (Fig. 1). The model receives input from two types of
cells, which mimic the outputs of two neuronal types in cortical area S2
that show responses to vibrotactile stimuli (but not persistent delay
activity). The positively monotonic cells increase their firing rate with
larger stimulus frequency, while negatively monotonic cells act oppo-
sitely (Salinas et al., 2000). We assume that the two types of transient
inputs from S2 project to the two different networks in our model. This
assumption automatically leads to both positively and negatively monot-
onic tuning of the PFC cells in our model.

Single Neurons and Synapses
In the spiking network model, we simulate the individual cells as leaky
integrate-and-fire neurons (Tuckwell, 1988). All inputs to a cell are given
in terms of excitatory or inhibitory conductances, which give rise to
currents that are integrated over time in the membrane potential. Once
the membrane potential reaches a threshold, the cell fires an action
potential and the membrane potential is reset to a fixed value for a refrac-
tory time, before temporal integration continues. The full dynamical
equations are presented in the Supplementary Material.

Our network makes the simplification that afferent input reaches cells
through AMPA receptor-mediated (AMPAR) synapses of 2 ms time
constant, while recurrent activity is transmitted purely through the
slower NMDA receptors (NMDARs), with 100 ms time constant. The
importance for working memory of the relative abundances and
strengths of AMPARs and NMDARs has been investigated elsewhere

(Wang, 1999; Compte et al., 2000), showing the deleterious effect of a
large ratio of AMPARs to NMDARs in recurrent synapses. Here, we utilize
the slow time-constant of NMDARs in recurrent connections to enhance
the time-constant of the entire network (Seung et al., 2000b).

All excitatory, recurrent synapses exhibit short-term presynaptic facil-
itation and depression (Varela et al., 1997; Hempel et al., 2000). We
implement the scheme described by Matveev and Wang (2000), which
assumes a docked pool of vesicles containing neurotransmitter, where
each released vesicle is replaced with a time constant, τd. The finite pool
of vesicles leads to synaptic depression, as when the presynaptic neuron
fires more rapidly than vesicles are replaced, no extra excitatory trans-
mission is possible. Such synaptic depression contributes to stabilizing
persistent activity at relatively low rates, strongly enhancing the post-
synaptic effect of NMDAR saturation. For example, a synapse with 16
docking sites and a docking time constant of 0.5 s has a maximum rate of
vesicle release of 32 per second. Such saturation in the recurrent excita-
tion reduces the excitatory feedback significantly, even for firing rates of
<20 Hz. This allows the network to have stable states of persistent activity
with relatively low firing rates (e.g. 15 Hz), where the incremental
increase in feedback excitation is already diminishing as the firing rate
rises.

Synaptic facilitation helps to stabilize the network to noise, because
brief fluctuations in activity do not get transmitted through recurrent
excitatory synapses — in particular, the resting, spontaneous state of each
group is more stable. Whereas the cues of 0.5 or 1 s duration, which
cause a response in the network, elicit many action potentials and facili-
tate the synapses in a group that is driven into the active persistent state.
Note that our network is not designed to use the longer time constants of
the facilitating synapses as the basis of temporal integration (Shen, 1989).

Stimulus
The stimulus to the network is modeled by fast synaptic excitation medi-
ated by AMPA receptors, with a maximum conductance of 3 nS. The
sensory stimulus frequency, s, is expressed in terms of the rate, λ, of the
presynaptic Poisson spike train. Here specifically, we used λ = 5s, with s
ranging from 10 to 40 Hz (the flutter range). When the positively mono-
tonic cells receive the lowest stimulus input, the negatively monotonic
cells receive the highest, and vice versa. Hence the negatively monotonic
cells receive a stimulus of approximately (50 – s) Hz, where s is the vibra-
tional stimulus frequency. Note that for a given cue, the stimulus is of the
same strength to all neurons with the same sign of tuning.

In the last section, where we analyze the ability of the network to inte-
grate a stimulus over longer periods of time, we apply the Poisson input
to the positively monotonic neurons only.

Experimental Data
The experimental data we compared with our model were taken from
extracellular recordings from microelectrodes in the inferior convexity
of the prefrontal cortex in macaque monkeys, as described elsewhere
(Romo et al., 1999; Brody et al., 2003). The task was a delayed compar-
ison of vibrational frequency, which required the monkey to remember
the ‘flutter’ frequency of an initial vibrotactile stimulus on its finger,
during the 3 or 6 s delay period. In this paper, we present some examples
of spike trains from single neurons that exhibited persistent stimulus-
dependent activity throughout the delay.

Data Analysis
Unless otherwise stated, all firing-rate histograms and tuning curves for
the simulations were calculated from single neurons separately, averaged
over ten simulations with different seeds in the random number gener-
ator for external noise. We used a Gaussian smoothing of time window
150 ms before binning spikes to generate the histograms. For model
simulations, tuning curves were obtained with an average firing rate of
between 3 and 6 s after the offset of the stimulus. The tuning curves for
the experimental data contain an average firing rate of between 0.5 and
2.5 s after the offset of the stimulus for a 3 s delay protocol, and between
0.5 and 5.5 s after the end of the stimulus for a 6 s delay protocol. We did
not use the initial and final 0.5 s of the delay, because different activity
during the stimulus or response could affect the data in these time inter-
vals after smoothing.
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Results

Monotonically Tuned Persistent Activity
The neural spiking in our model is compared with that seen
during the delay period of the somatosensory delayed-frequency
comparison experiment of Romo (Romo et al., 1999; Brody et

al., 2003). The experiment consists of an initial somatosensory
vibrational stimulus of fixed (0.5 or 1 s) duration followed by a
delay period (of 3–6 s), then a second stimulus of identical
duration but different frequency to the first. The monkey must
indicate which stimulus frequency is the greater, a task which
requires memory of the initial stimulus frequency during the
delay. The monkey is able to perform the task, and indeed,
Romo’s group observed neurons whose firing rates vary mono-
tonically with stimulus frequency, persistently during the delay.
Such neurons could subserve the mnemonic function necessary
for the task. By careful adjustment of the connectivity strengths
between neural groups, our model network reproduces such
persistent neural activity. The issue of fine-tuning of parameters
will be discussed later.

The tuned model was simulated with a stimulation protocol
similar to that used in the experiment. The network is initially in
a resting state, where most excitatory neurons fire in the range
of 1–8 Hz. A transient (1 s) stimulus is introduced to all the
neurons in the network, with an intensity assumed to be
proportional to the vibrational frequency in the experiment (see
Materials and Methods). Neurons increase their spike discharges

in response to the stimulus, which leads to reverberative exci-
tation through recurrent connections. This intrinsic synaptic
excitation is able to sustain persistent activity after the stimulus
offset. Our network is in two halves, each half corresponding to
neurons that receive either positively monotonic or negatively
monotonic input from S2. S2 contains such oppositely tuned
cells, which do not show persistent activity (Salinas et al., 2000).

Figure 2 shows the activities of two representative neurons. In
Figure 2a, a single neuron shows delay period activity that
monotonically increases with the stimulus frequency. This
neuron belongs to the first half of our network model which
receives a stronger input with a higher stimulus frequency. The
larger transient neural responses recruit more recurrent excita-
tion which can sustain persistent activity at a higher rate. In
contrast, the neuron in Figure 2b shows a monotonically
decreasing tuning of its mnemonic activity. This neuron belongs
to the second half of our network model, which receives less
inputs with a higher stimulus frequency, hence the recruited
recurrent excitation as well as the resulting persistent activity is
lower.

Our model simulations (Fig. 2) can be compared with the
experimentally observed neural activity in the prefrontal cortex
during the vibrotactile experiment (Fig. 3). The model neurons
fire most strongly during the transient response to stimulus,
then settle to a persistent rate which is monotonically
dependent on the stimulus frequency (middle panels). The
tuning curves (lower panels) are clearly monotonic and demon-

Figure 2. Persistent neural activity of the parametric working memory model. (a) A positively monotonic, excitatory cell. Top panel: rastergrams, showing spikes in blocks of 10
trials, each block corresponding to a fixed stimulus frequency. The cell initially fires spikes at a few Hertz spontaneously. A transient stimulus (shaded) produces a large response,
followed by persistent activity after the stimulus offset. The firing rate of both the transient response and persistent activity increases with the stimulus frequency. Middle panel:
trial-averaged neural firing rate, where darker shades of gray represent increasing stimulus frequency. Bottom panel: the tuning curve shows the average rate in the last 5s of the
delay period following each stimulus. (b) A negatively monotonic inhibitory interneuron, same plots as (a).
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strate parametric working memory. The average firing rates of
neurons in the interval between 2 and 5 s after the end of the
stimulus exhibit a quasi-linear or sigmoidal dependence on stim-
ulus frequency.

Different neural groups have different activation thresholds,
and show persistent activity at different rates for a given stim-
ulus. This is similar to the models of Seung et al. (2000a) and
Koulakov et al. (2002). In these cases, neurons have different
intrinsic input thresholds for spike discharges. In the present
model, the synaptic connections are asymmetrical (Fig. 1; see
Materials and Methods). As a result, neural groups receive
progressively more overall recurrent excitation from left to right
across the network. This way, neural group 1 has the lowest
threshold and group 12 has the highest threshold, when driven
by external inputs. This range of excitability allows the network
to have a range of responses to varying stimuli. Because the
tuning is monotonic, the stimulus frequency is encoded and
stored in memory not by what neurons fire significantly, but at
what rates all neurons fire. Because of background noise, and
because the network is sensitive to parameter tuning (see
below), even the averaged population firing rate of an individual
neural column shows significant temporal fluctuations. The
memory of the stimulus is better maintained by persistent
activity pooled across the entire network of all neural groups.

The experimentally observed tuning curves of prefrontal
neurons are very diverse; some are linearly tuned with the vibra-
tion frequency, others show sigmoid-shaped tuning (Fig. 4A).
Our model reproduces to a large degree this diversity of tuning
curves of single neurons (Fig. 4B). Our model has four types of
neurons, both positively and negatively monotonic types of

pyramidal cells and interneurons. The interneurons have differ-
ent intrinsic properties (see Supplementary Material), as they are
designed to be fast-spiking and generally have a higher firing rate
than pyramidal cells. We found that the tuning curves of
interneurons are more linear than those of pyramidal cells. This
can be explained by the fact that interneurons receive broad
excitation from the pyramidal cells; averaging over a few hard
sigmoid functions yields a more linear function.

Robustness to Heterogeneity
A key issue in evaluating the biological feasibility of our network
is a determination of its robustness to variations of the param-
eters. The key parameters that we tuned were the connection
strengths. To assess the effects of mis-tuning, we multiplied the
synaptic strengths Wi→j by  where  is
sampled for each group of neurons, drawn from a Gaussian
distribution with standard deviation σg, while  is sampled
separately for each neuron, drawn from a Gaussian of standard
deviation σn. The leak conductances also varied, with a
standard deviation of 1.2 nS (i.e. ±3%).

We found that the more deleterious way to mis-tune is to scale
up or down all the connection strengths for a particular neural
group (σg > 0). We find that 5% population heterogeneity causes
a clear drift in firing rates to a few stable persistent states. The
network loses its ability to discriminate many different inputs,
and a large gap in firing rates (typically up to 15–20 Hz) opens
up for some neurons when the stimulus is strong enough to
propel the network from one discrete stable state to another.
The time constant for drift is still long (2–3 s), but that is dimin-
ished enough to limit the network’s ability to distinguish >3 or 4

Figure 3. Sustained delay activity of prefrontal cortical neurons recorded from macaque monkeys during parametric working memory. (a) A positively monotonic neuron. (b) A
negatively monotonic neuron. Same format as Figure 2
.
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stimulus strengths after 6 s. A less damaging variation is to scale
up or down all connections to individual neurons separately and
randomly (σg = 0 and σn > 0). Indeed, the mnemonic ability of
the network is maintained with a 10% variation in synaptic
strengths for each individual neuron, while the heterogeneity in
the inter-group connection strength is ±1%. The firing rates after
different stimuli remain separate throughout the delay period of
6 s and neuronal responses are qualitatively indistinguishable
from those presented in Figures 2 and 4. Such heterogeneity
within a population does lead to a greater variety of tuning
curves, as, unlike the homogeneous case, heterogeneity allows
tuning curves to be different for each of the 100 inhibitory or
400 excitatory cells within a population.

Such stability to heterogeneity within a population may not be
a surprise. Assuming that neurons are uncorrelated or weakly
correlated, heterogeneities of single neurons can be averaged
out across a large neural population. Indeed, a 10% variation of
individual neuronal properties results in only an ∼0.5% variation
in the average properties of 400 neurons. However, our results
do indicate that with the large numbers of neurons available in
the cortex, tuning of single neuronal parameters no longer
needs to be extremely precise.

Mean-field Analysis of Model Networks
To elucidate the precise requirements for parametric working
memory behavior, we carried out mathematical analysis of the
mean-field approximation of our biophysically based spiking
model. The mean-field approach (Amit and Brunel, 1997; Hansel
and Sompolinsky, 1998; Brunel, 2001; Brunel and Wang, 2001;
Renart et al., 2003b) is to replace quantities such as synaptic
conductances by their averages, ignoring their fluctuations due

to individual spikes. The mean-field approximation is useful, as
it allows us to describe a whole population of spiking neurons
with their average activity. Hence, we can rapidly solve for the
stable states of the system, and observe how those states change
as a function of parameters like the connection strengths, or
intrinsic excitability. A detailed account of the mean field equa-
tions can be found in the Supplementary Material. We found that
the mean-field calculations are confirmed qualitatively by simula-
tions of the original spiking model, but an adjustment of param-
eters is necessary to match precisely the behaviors of the two
models quantitatively.

To help understand the results of our mean-field analysis, let
us first consider schematically one neural group with recurrent
excitation. When the recurrent strength WE→E is above a critical
value, a bistability between the resting spontaneous state and an
active persistent state is produced by strong recurrent excita-
tion. The bistability persists over a range of applied excitation,
determined by the excitatory synaptic drive conductance, gApp,

to the neurons. This is illustrated schematically in Figure 5,
where the network behavior is shown on the plane of the two
parameters WE→E and gApp. While WE→E is a measure of the recur-
rent excitation, multiplying feedback from within the neural
group, gApp is a constant excitatory drive, which would arise, for
example, from other neural groups. A change in intrinsic param-
eters which alters the firing thresholds of neurons, will shift the
whole diagram along the axis of gApp. In particular, the larger the
leak conductance, gL, the larger the required drive, gApp, to
achieve firing threshold and bistability.

With WE→E far above the critical value (point A on the left
panel of Fig. 5), the bistability range of gApp is wide and the
behavior is robust. However, there is a large gap in the firing
rates between the active and resting states (right panel of Fig. 5).
In order to realize a quasi-continuum of firing rates, WE→E should
be as close to the critical value as possible (the point B, which is
called a ‘cusp’ in the theory of dynamical systems). However, in
this case the value of gApp must be precisely tuned (Seung et al.,
2000b). Moreover, for a single neural group, the quasi-
continuous range of firing rates is actually quite small (a few
Hertz), largely determined by the properties of a single neuron’s
input–output relation (Brunel, 2001). The range of response
should be increased for two reasons. First, a wider range allows
a wider range of stimulus strengths to be encoded by the
network. Secondly, if neurons encode the stimulus over a large
range of firing rates, the sensitivity of the network is increased,
as different stimuli cause larger changes in firing rates that are
more easily decoded. The limited range can be increased by
utilizing a large number of interconnected neural groups with
different thresholds. The recruitment of each new neural group
increases the excitatory drive to, hence activity of, those already
active neural groups, leading to a much larger quasi-continuous
range of persistent firing rates.

The mean-field analysis of our complete two-network model
demonstrates a large number of stable states over a very narrow
range of synaptic drive (Fig. 6). Our model network has as many
cusps as the number of excitatory neural groups, and tuning the
whole network to a continuous attractor requires an alignment
of cusps so that the system can be tuned to all of them at once.
The ideal vertical line of Figure 5 becomes wavy on a fine scale
when many neural groups are combined to make a continuum.
It is the nearness of the system to many cusps that allows the
stable states to be close together, and results in a long time
constant for drift following any stimulus. If connections within

Figure 4. Diversity of tuning curves of persistent neural activity in prefrontal neurons
and our model. (A) Examples of positively monotonic (left) and negatively monotonic
(right) tuning curves from the experimental database. (B) Examples chosen to indicate
the full variety of tuning curves from model simulations. Note the quasi-continuous
nature of the curves, with small rate jumps. Filled circles: excitatory cells; open circles:
interneurons.
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the system are varied randomly, the cusps are no longer aligned,
but as there are a large number of cusps, the system will still be
near a few of them and typically have more than one stable state.
Hence, random mis-tuning does not cause a severe detriment to
the network properties. However, a global mis-tuning (such as a
global scaling of all synapses) will result in drifts of firing rates as
described in previous work (Seung et al., 2000a,b).

Time Integration
A line attractor network converts a transient input into a
persistent output which is proportional to the input amplitude,
so in that sense it performs an integration of the input. However,
if the computation is truly mathematical integration, neurons
should also be able to integrate over time, i.e. the firing rate of
persistent activity should reflect the time duration of an input
stimulus. To assess the temporal properties of integration by our

network, we carried out a series of trials where the strength and
frequency of the stimulus were fixed but the duration of the
stimulus changed.

The results presented in Figure 7 show that the network can
integrate an input slowly in time, over many s (Fig. 7A). Equiva-
lent slow integration is observed in the mean-field network
described in the previous section. Such a slow time course of
integration is remarkable given that the longest biophysical time
constant of the model is 100 ms. Once the stimulus ends, the
network maintains a level of activity that is monotonically
dependent on the stimulus duration (Fig. 7B). Optimal time
integration occurs provided that the input strength is not too
small (below a critical threshold) or too large (beyond which
saturation occurs).

The threshold and saturation effects imply that the integration
is not ‘pure’ in the sense that if average firing rates are plotted as

Figure 5. Fine-tuning of parametric working memory model. Schematic illustration of a neural group with recurrent excitation. Left panel: network behavior as a function of the
recurrent strength WE→E and applied excitatory input, gApp. When WE→E is above a critical value (e.g. point A), a bistability between a resting state and an active persistent state
occurs in a range of gApp. This range shrinks to zero at the critical value of WE→E, point B, which is called a ‘cusp’. Right panel: there is a trade-off between robust bistability but with
a large gap in the firing rates of the two stable states (upper figure) and fine-tuning to the cusp where there can be a continuous range of firing rates (lower figure).

Figure 6. Bifurcation diagram of the finely tuned parametric working memory model, as a function of applied synaptic drive conductance, gApp. Synaptic drive is an offest
conductance for demonstration purposes, that we add to the positively montonic neurons and subtract from the excitatory input to negatively monotonic neurons. A negative drive
means the positively monotonic neurons have reduced synaptic excitation. A shift in any intrinsic neuronal parameter has a similar effect on the system. All the stable states are
computed using the mean field theory for the entire network of twelve positively monotonic and twelve negatively monotonic, excitatory and inhibitory, neural groups. These
persistent states are plotted as the firing rates of cells in neural group 3. (A) A quasi-continuum of stable firing rates is possible with correct tuning of applied synaptic drive. (B) An
enlargement of the region near the quasi-continuous attractor indicates a discrete number of stable persistent states close to the number of neural groups, with small changes in
firing rate between states. Portions of the curve with negative slopes are the branches of unstable states (dashed lines).
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a function of the product of stimulus frequency and duration,
they do not fall on a universal curve. A doubling of the stimulus
duration with a halving of the frequency, in general produces a
smaller response. Experimental tests of the temporal scaling
properties of integration in both the oculomotor system and
working memory system would be illuminating.

Ramping Neurons
Finally, we investigated the issue of diversity of neural responses
observed in the somatosensory discrimination experiment.
During the delay period, persistent activity of many prefrontal-
cortical neurons is not tonic, but evolves slowly over time. Some
neurons tune to the stimulus early in the delay, others late in the
delay. Moreover, average rates of some neurons ramp down or
ramp up. The two types of temporal dependence are correlated
with each other, but are not identical. Here, we investigate the
two subtypes of neurons, which do not necessarily show any
stimulus dependence, but whose average rates ramp up or ramp
down during the delay. These are only two kinds of time

dependence, out of a greater variety reported by Brody et al.

(2003).

To generate such neurons, we extended our model to include
three sets of neurons (each having 12 neural groups), each struc-
tured like the positively monotonic half of our previous network
(Fig. 8A, upper right). The first neural population shows tonic
persistent activity during the delay, as in our original model, but
at a saturated rate that is independent of stimulus strength
(Fig. 8A, upper left). It is assumed that the first neural popula-
tion sends excitatory projections to the second population
which integrates the inputs slowly in time, as in the previous
subsection. Consequently, the second neural population shows
slow ramp-up spike discharges during the delay period (Fig. 8A,
lower right). Furthermore, the second and third neural popu-
lations are reciprocally connected by inhibition (Constantinidis
et al., 2002). The transient stimulus activates the third neural
population and, as the second neural population ramps up over
a few s, the third population is progressively inhibited; therefore
its activity ramps down during the delay (Fig. 8A, lower left).
Similarly, the initial activity of the third population delays the
ramping up of the second population in a closely matched tug-
of-war that is resolved by the extra tonic input from the first to
the second population. Note that these ramping behaviors occur
during the delay, while there is no applied stimulus.

Experimentally it was found that the rate of evolution of time-
dependent neurons is plastic. For example, when the delay dura-
tion is doubled from one block of trials to another (say, from 3 s
to 6 s), the ramping slope of delay activity is roughly reduced by
a factor of 2, so that a ramping neuron reaches the same final
activity level at the end of the delay (Brody et al., 2003). Our
model (Fig. 8A, upper right) suggests a synaptic mechanism for
such plasticity. Since ramping neurons integrate inputs from the
tonic neural population, the ramp slope depends on the
strength of synapses between the two neural populations.
Indeed, when this synaptic conductance is reduced by one-third
(from g1 to 2g1/3) the time course of a ramping neuron is
delayed and slowed (Fig. 8B, left panel). However, if the times-
cale is compressed by a factor of two, the ramping time course
becomes superposable with that in the control case (Fig. 8B,
right panel), similar to the experimental observations (Brody et

al., 2003).

Discussion

In this paper we presented a large-scale cortical network model
(with 12 000 neurons) for parametric working memory. The
main results are threefold. First, our model reproduces the
salient neural activity data from monkey prefrontal cortex in a
somatosensory delayed discrimination experiment (Romo et al.,
1999; Brody et al., 2003). A model with two inhibitorily coupled
networks reproduces positively and negatively monotonic
neurons, and a diversity of tuning curves of memory activity.
Secondly, we show that there is a trade-off between robust
network behavior with large jumps in the tuning curves, and
fine-tuned network behavior with a quasi-continuum of attractor
states. The fine-tuning of our model is mathematically identified
to be a precise alignment of cusps in the bifurcation diagram of
the network. This is also true for the model of Seung et al.

(2000a) (data not shown). Thirdly, we show that the finely
tuned network can integrate stimulus inputs over many s, even
though single neurons and synapses operate at timescales of
10–100 ms. Assuming that such time integration occurs in

Figure 7. Time integration of a stimulus with different duration and amplitude. (A) The
network can integrate a stimulus over a long time (1, 3 and 5 s), as shown by the
rastergrams and population firing rates. (B) The firing rate of persistent activity
(averaged between 3 and 6 s after the stimulus offset) is plotted as a function of
stimulus duration, different curves correspond to different stimulus frequencies (4, 8,
12 and 16 Hz, with increasingly darker shades of gray). Note that linear dependence on
the time duration of the stimulus occurs for moderate input strengths.
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downstream neural populations that receive inputs from a tonic-
ally persistent neural population, our model is able to reproduce
the ramping-up and and ramping-down behaviors of some time-
dependent neurons observed in the prefrontal cortex (Romo et

al., 1999; Brody et al., 2003).
The key to the ability of a neural network to encode monoton-

ically and remember a continuous quantity, and integrate inputs
in the mathematical sense, is to achieve an effective time
constant of many seconds. At least three biological implementa-
tions of such integration are conceivable.

First, single neurons and synapses may possess mechanisms
with very long intrinsic time constants, such as synaptic facili-
tation (Shen, 1989) or intracellular calcium release from stores
(Loewenstein and Sompolinsky, 2002). Alternatively, a single
neuron could tune positive internal feedback (from calcium

channels) to generate a longer cellular time constant from its
faster intrinsic mechanisms (Durstewitz, 2003). Recently,
Egorov et al. (2002) reported experimental evidence for a slow
(seconds) integration process in single neurons of the rat layer V
entorhinal cortex. The underlying mechanisms remain to be
elucidated.

Secondly, a network may contain a number of bistable and
independently switchable neural groups (Koulakov et al., 2002).
The continuous variable can then be encoded by the number of
neural groups that are switched on; and such a digital code can
be close to a continuous representation if the number of neural
groups is large. However, this scenario predicts significant gaps
in the tuning curves of memory neurons, due to the jumps
between the resting state and active persistent states, that are
not seen in neural data from working memory experiments. It

Figure 8. Diversity of delay period activity: tonic, early and late neurons. (A) Schematic diagram of an extended model with three neural populations (all are positively monotonic
with the stimulus frequency). The first network (Tonic) shows tonic persistent activity and projects with strength g to a second network (Up), which integrates the inputs slowly to
generate ramping-up activity during the delay. The third network (Down) displays a transient activation by the stimulus, and ramping-down time course of delay period activity due
to the progressive inhibition from population 2. The trial-averaged firing rates for three different cells from each type of network are shown for 5 s following the stimulus frequency.
(B) Neurons in population 2 ramp-up with a slope and a delay that depend on the input synaptic strength. Left panel: control (black, solid), and when the synaptic strength, g, from
the tonic population 1 is reduced by one-third (gray, dashed). Right panel: when the time is scaled by half for the gray, dashed curve, the two time courses closely resemble each
other.
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remains to be seen whether gaps in the firing rate could be
rendered insignificant with biophysically realistic mechanisms.

Thirdly, a network can be tuned judiciously toward a
continuum of attractor states (Seung, 1996; Seung et al., 2000a).
Our simulations show that a finely tuned model compares favor-
ably with the experimental data, without large gaps in the
tuning curves of mnemonic neural activity. The inherent
problem of a trade-off between robustness to noise and hetero-
geneity versus a continuum of stable states is ameliorated by the
cross-inhibition between positively and negatively monotonic
groups, as well as the large number of neurons in the system. In
our network there are a total of 24 excitatory neural groups,
each with strong recurrent feedback adjusted to be at the ‘cusp’
to produce a continuous attractor over a small range of inputs
(Figs 5 and 6). With 24 continuous attractors available, the
whole network is able to be in the vicinity of several of them
robustly. Near the attractor states the effective time constant of
the network is much longer than the intrinsic cellular or
synaptic time constants (Seung et al., 2000b).

In the brain, fine-tuning of a recurrent network is likely to be
accomplished by some activity-dependent homeostatic mech-
anisms (Marder, 1998; Turrigiano et al., 1998; Turrigiano, 1999;
Turrigiano and Nelson, 2000; Renart et al., 2003a). For example,
consider a neural group with excitatory feedback (shown in Fig.
5). Assuming that regulatory processes (operating at timescale of
days) stabilize the long-term firing rate of neurons at ∼8–15 Hz
(the ‘goal’ or ‘target’ rate), then the network will be naturally
tuned to the narrow parameter region near the cusp (with
continuous attractor states). Figure 6 emphasizes that for the
tuned system shown, the average firing rate can only be in the
range of 8–15 Hz if the conductance offset, gApp (in this case
zero) exactly matches the position of the vertical line. Hence a
coarse monitoring of average firing rate (Turrigiano, 1999; Turri-
giano and Nelson, 2000) could lead to a very fine tuning of
neuronal parameters.

Such a homeostatic mechanism would combat and compen-
sate any mis-tuning of cellular or synaptic parameters, so that the
network would be stabilized near the cusp in spite of parameter
mis-tuning. Theoretical work suggests that such a homeostatic
mechanism works effectively in a continuous attractor model for
spatial working memory (Renart et al., 2003a). It would be inter-
esting to see whether the same kind of ideas can be applied to
parametric working memory models.

It can be noted from Figure 5 that tuning a system to a cusp
requires adjustment of two parameters. Durstewitz (2003) has
suggested that as well as mean firing rate, a cell could monitor its
variance in activity as a second parameter to tune. Noting that
the variance is typically maximal at a line attractor, where fluctu-
ations are not damped, Durstewitz suggests that a neuron can
utilize such information. Further experimental work will be very
useful to demonstrate the feasibility of such cellular tuning
processes.

With appropriate network connectivity (Fig. 8) our model can
reproduce cells which have a delay from the end of the stimulus
until they begin to ramp up. Moreover, the length of delay and
rate of ramping-up can be scaled in time by modification of
synaptic strengths. Other mechanisms could produce delays,
such as utilizing slow currents within neurons, but there are no
known mechanisms whereby such intrinsic currents could
change their time constants. Durstewitz (2003) has suggested a
similar synaptic learning mechanism, but where the strength of

input from other cells affects a neuron’s intrinsic ramping rate.
Experimentally, whether a change in the duration of the delay
does give rise to the kind of synaptic modification suggested by
our model is not known and remains to be studied in the future.

As well as a time variation of average firing rates, neurons in
the prefrontal cortex can also exhibit a time variation in their
tuning to the stimulus. The two behaviors are correlated,
because when the average firing rate is very low, there is typic-
ally little stimulus dependence, as a strong stimulus dependence
would cause a range of firing rates across stimuli, resulting in an
average firing rate that differs significantly from the spontaneous
rate. However, during the delay some neurons can maintain a
near constant, typically high average firing rate, while the
spread of firing rates is large only early or late in the delay. We
speculate that a strategy similar to the one we outlined above
could generate many of these other types of time-dependent
behavior observed experimentally.

To conclude, we would like to emphasize that, at present, it
remains unproven that the continuous attractor paradigm is a
necessary and accurate description of spatial or parametric
working memory circuits. Because of experimental constraints,
typically only a relatively small number (<10) of stimuli are used
in working memory experiments, such as the oculomotor
response task (Funahashi et al., 1989) or the somatosensory
discrimination task (Romo et al., 1999). Moreover, even if a large
number of discrete stimuli are sampled, animals tend to categ-
orize these values when possible, and avoid the difficult task of
memorizing a continuous quantity (Hernandez et al., 1997).
Hence, further experiments are desirable to rigorously test
whether the internal representation of an analog stimulus in
working memory is truly continuous.

Notes
We dedicate this paper to the memory of Patricia S. Goldman-Rakic, a
friend and colleague whose prescience and enthusiasm have shaped
research in working memory and the prefrontal cortex.
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