2,024 research outputs found
Labyrinthine pathways towards supercycle attractors in unimodal maps
We uncover previously unknown properties of the family of periodic
superstable cycles in unimodal maps characterized each by a Lyapunov exponent
that diverges to minus infinity. Amongst the main novel properties are the
following: i) The basins of attraction for the phases of the cycles develop
fractal boundaries of increasing complexity as the period-doubling structure
advances towards the transition to chaos. ii) The fractal boundaries, formed by
the preimages of the repellor, display hierarchical structures organized
according to exponential clusterings that manifest in the dynamics as
sensitivity to the final state and transient chaos. iii) There is a functional
composition renormalization group (RG) fixed-point map associated to the family
of supercycles. iv) This map is given in closed form by the same kind of
-exponential function found for both the pitchfork and tangent bifurcation
attractors. v) There is a final stage ultra-fast dynamics towards the attractor
with a sensitivity to initial conditions that decreases as an exponential of an
exponential of time.Comment: 8 pages, 13 figure
Shape coexistence in Lead isotopes in the interacting boson model with Gogny energy density functional
We investigate the emergence and evolution of shape coexistence in the
neutron-deficient Lead isotopes within the interacting boson model (IBM) plus
configuration mixing with microscopic input based on the Gogny energy density
functional (EDF). The microscopic potential energy surface obtained from the
constrained self-consistent Hartree-Fock-Bogoliubov method employing the
Gogny-D1M EDF is mapped onto the coherent-state expectation value of the
configuration-mixing IBM Hamiltonian. In this way, the parameters of the IBM
Hamiltonian are fixed for each of the three relevant configurations (spherical,
prolate and oblate) associated to the mean field minima. Subsequent
diagonalization of the Hamiltonian provides the excitation energy of the
low-lying states and transition strengths among them. The model predictions for
the level energies and evolving shape coexistence in the considered
Lead chain are consistent both with experiment and with the indications of the
Gogny-EDF energy surfaces.Comment: 12 pages, 6 figures, 1 tabl
Functional approach for pairing in finite systems: How to define restoration of broken symmetries in Energy Density Functional theory ?
The Multi-Reference Energy Density Functional (MR-EDF) approach (also called
configuration mixing or Generator Coordinate Method), that is commonly used to
treat pairing in finite nuclei and project onto particle number, is
re-analyzed. It is shown that, under certain conditions, the MR-EDF energy can
be interpreted as a functional of the one-body density matrix of the projected
state with good particle number. Based on this observation, we propose a new
approach, called Symmetry-Conserving EDF (SC-EDF), where the breaking and
restoration of symmetry are accounted for simultaneously. We show, that such an
approach is free from pathologies recently observed in MR-EDF and can be used
with a large flexibility on the density dependence of the functional.Comment: proceeding of the conference "Many body correlations from dilute to
dense Nuclear systems", Paris, February 201
Relativistic Hartree plus Bogoliubov description of the deformed N=28 region
Ground-state properties of neutron-rich N≈28 nuclei are described in the framework of relativistic Hartree plus Bogoliubov (RH+B) theory. The model uses the NL3 effective interaction in the mean-field Lagrangian, and describes pairing correlations by the pairing part of the finite range Gogny interaction D1S. Two-neutron separation energies and ground-state quadrupole deformations that result from fully self-consistent RH+B solutions are compared with available experimental data. The model predicts a strong suppression of the spherical N=28 shell gap for neutron-rich nuclei: the 1f7/2⃗ fp core breaking results in deformed ground states. Shape coexistence is expected for neutron-rich Si, S, and Ar isotopes
Genome-Wide Association and Genomic Selection for Resistance to Amoebic Gill Disease in Atlantic Salmon
Abstract
Amoebic gill disease (AGD) is one of the largest threats to salmon aquaculture, causing serious economic and animal welfare burden. Treatments can be expensive and environmentally damaging, hence the need for alternative strategies. Breeding for disease resistance can contribute to prevention and control of AGD, providing long-term cumulative benefits in selected stocks. The use of genomic selection can expedite selection for disease resistance due to improved accuracy compared to pedigree-based approaches. The aim of this work was to quantify and characterize genetic variation in AGD resistance in salmon, the genetic architecture of the trait, and the potential of genomic selection to contribute to disease control. An AGD challenge was performed in ∼1,500 Atlantic salmon, using gill damage and amoebic load as indicator traits for host resistance. Both traits are heritable (h2 ∼0.25-0.30) and show high positive correlation, indicating they may be good measurements of host resistance to AGD. While the genetic architecture of resistance appeared to be largely polygenic in nature, two regions on chromosome 18 showed suggestive association with both AGD resistance traits. Using a cross-validation approach, genomic prediction accuracy was up to 18% higher than that obtained using pedigree, and a reduction in marker density to ∼2,000 SNPs was sufficient to obtain accuracies similar to those obtained using the whole dataset. This study indicates that resistance to AGD is a suitable trait for genomic selection, and the addition of this trait to Atlantic salmon breeding programs can lead to more resistant stocks.</jats:p
Observational Constraints to the Evolution of Massive Stars
We consider some aspects of the evolution of massive stars which can only be
elucidated by means of "indirect" observations, i.e. measurements of the
effects of massive stars on their environments. We discuss in detail the early
evolution of massive stars formed in high metallicity regions as inferred from
studies of HII regions in external galaxies.Comment: 6 pages, 1 figure; Invited Paper presented at the Roma-Trieste
Workshop 1999 "The Chemical Evolution of the Milky Way: Stars versus
Clusters", Vulcano Island (ME, Italy), 20-24 September, 1999, eds. F.
Giovannelli & F. Matteucci, Kluwer-Holland (in press
Quasiperiodic graphs: structural design, scaling and entropic properties
A novel class of graphs, here named quasiperiodic, are constructed via
application of the Horizontal Visibility algorithm to the time series generated
along the quasiperiodic route to chaos. We show how the hierarchy of
mode-locked regions represented by the Farey tree is inherited by their
associated graphs. We are able to establish, via Renormalization Group (RG)
theory, the architecture of the quasiperiodic graphs produced by irrational
winding numbers with pure periodic continued fraction. And finally, we
demonstrate that the RG fixed-point degree distributions are recovered via
optimization of a suitably defined graph entropy
Synthesis, Leishmanicidal and Cytotoxic Activity of Triclosan-Chalcone, Triclosan-Chromone and Triclosan-Coumarin Hybrids
Twelve hybrids derived from triclosan were obtained via Williamson etherification of O-triclosan alkyl bromide plus chalcone and O-coumarin or O-chromone alkyl bromide plus triclosan, respectively. Structures of the products were elucidated by spectroscopic analysis. The synthesized compounds were evaluated for antileishmanial activity against L. (V) panamensis amastigotes. Cytotoxic activity was also evaluated against mammalian U-937 cells. Compounds 7–9 and 17, were active against Leishmania parasites (EC50 = 9.4; 10.2; 13.5 and 27.5 µg/mL, respectively) and showed no toxicity toward mammalian cells (>200 µg/mL). They are potential candidates for antileishmanial drug development. Compounds 25–27, were active and cytotoxic. Further studies using other cell types are needed in order to discriminate whether the toxicity shown by these compounds is against tumor or non-tumor cells. The results indicate that compounds containing small alkyl chains show better selectivity indices. Moreover, Michael acceptor moieties may modify both the leishmanicidal activity and cytotoxicity. Further studies are required to evaluate if the in vitro activity against Leishmania panamensis demonstrated here is also observed in vivo.The authors thank COLCIENCIAS (contract No. 0333-2013, code: 111556933423) and the Universidad de Antioquia (Estrategia de Sostenibilidad 2013–2014 and CIDEPRO) for financial support
- …
