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ABSTRACT 25 

Amoebic gill disease (AGD) is one of the largest threats to salmon aquaculture, causing 26 

serious economic and animal welfare burden. Treatments can be expensive and 27 

environmentally damaging, hence the need for alternative strategies. Breeding for 28 

disease resistance can contribute to prevention and control of AGD, providing long-29 

term cumulative benefits in selected stocks. The use of genomic selection can expedite 30 

selection for disease resistance due to improved accuracy compared to pedigree-based 31 

approaches. The aim of this work was to quantify and characterise genetic variation in 32 

AGD resistance in salmon, the genetic architecture of the trait, and the potential of 33 

genomic selection to contribute to disease control. An AGD challenge was performed in 34 

~1,500 Atlantic salmon, using gill damage and amoebic load as indicator traits for host 35 

resistance. Both traits are heritable (h
2
 ~ 0.25-0.30) and show high positive correlation, 36 

indicating they may be good measurements of host resistance to AGD. While the 37 

genetic architecture of resistance appeared to be largely polygenic in nature, two regions 38 

on chromosome 18 showed suggestive association with both AGD resistance traits. 39 

Using a cross-validation approach, genomic prediction accuracy was up to 18 % higher 40 

than that obtained using pedigree, and a reduction in marker density to ~2,000 SNPs 41 

was sufficient to obtain accuracies similar to those obtained using the whole dataset. 42 

This study indicates that resistance to AGD is a suitable trait for genomic selection, and 43 

the addition of this trait to Atlantic salmon breeding programs can lead to more resistant 44 

stocks. 45 

  46 
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INTRODUCTION 47 

Salmonids are a high-value group of fish species, comprising 16.6% of global fish trade 48 

in 2013 (FAO 2016). Demand has grown steadily and is expanding geographically, and 49 

Atlantic salmon (Salmo salar) has the highest production volume and value of all the 50 

salmonid species (FAO 2016). However, in recent years, Atlantic salmon supply has 51 

fluctuated, partly as a result of infectious disease outbreaks in all major salmon 52 

producing countries (FAO 2017). These outbreaks are a major threat to sustainable 53 

production and future expansion of salmon aquaculture. While solutions to several 54 

bacterial and viral diseases (e.g. vaccines) have been widely and routinely applied 55 

(Brudeseth 2013), parasitic diseases are currently presenting a substantially greater 56 

problem to the industry. In addition to the major economic concern, these parasitic 57 

diseases and current treatment strategies can pose serious animal welfare and 58 

environmental concerns. 59 

Amoebic gill disease (AGD), primarily caused by Neoparamoeba perurans, has been a 60 

perennial problem for salmon aquaculture in Australia, and outbreaks have become 61 

increasingly frequent in European salmon farms. It also affects other commercially 62 

important salmonids such as rainbow trout (Oncorhynchus mykiss) and chinook salmon 63 

(Oncorhynchus tshawytscha), and certain non-salmonid aquaculture species such as 64 

turbot (Scophthalmus maximus; Young et al. 2008). While gill disease symptoms are 65 

complex, AGD typically presents as multifocal white patches on the gill surface, lesions 66 

and epithelial hyperplasia leading to impaired gas exchange, poor growth and ultimately 67 

severe morbidity and mortality if untreated (Zilberg and Munday, 2000; Adams and 68 

Nowak, 2003). Current treatment strategies are crude, laborious, stressful to fish, and 69 

potentially environmentally damaging; for example involving hydrogen peroxide 70 

application or fresh water bathing of affected fish. This results in a large economic 71 
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burden associated with the costs of treatment and productivity losses due to the disease. 72 

Therefore, alternative approaches that help control the impact of AGD are highly 73 

desirable. 74 

One such method is improving the resistance of farmed salmon stocks to this disease via 75 

selective breeding, the benefits of which can be cumulative and permanent. Several 76 

studies have found significant estimates of heritability for disease resistance in 77 

aquaculture species (e.g. Silverstein et al. 2009; Gjerde et al. 2011; Yáñez et al. 2014a; 78 

Palaiokostas et al. 2016, Tsai et al. 2016). Harnessing this heritability for genetic 79 

improvement in selective breeding programs is a current goal. The high fecundity of 80 

aquaculture species, and resulting large full sibling family sizes, facilitates disease 81 

challenge testing of close relatives (i.e. full siblings) to enable breeding value estimation 82 

in selection candidates. Selection is often more accurate when the relationship between 83 

individuals is obtained from genomic data (genomic selection) rather than the pedigree 84 

(traditional selection), but it depends on the architecture of the trait as well as other 85 

technical variables such as marker density (Daetwyler et al. 2010). For instance, 86 

genomic selection has been found to outperform traditional selection in resistance to sea 87 

lice in Atlantic salmon (Ødegard et al. 2014; Tsai et al. 2016; Correa et al. 2017) and in 88 

resistance to pasteurellosis in sea bream (Sparus aurata; Palaiokostas et al. 2016). 89 

Further, while an initial study found no difference between genomic selection and 90 

pedigree-based approaches for resistance to bacterial cold water disease in rainbow trout  91 

(Vallejo et al. 2016), a later study with larger sample sizes resulted in doubling of 92 

accuracy with the genomic selection approach (Vallejo et al. 2017). One advantage of 93 

genomic selection over pedigree-based selection is that it more accurately captures the 94 

Mendelian sampling term between closely related individuals in the population – 95 

particularly relevant in aquaculture species with large families.  96 
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One of the main limitations of genomic selection is the cost; genotyping a large number 97 

of animals with a high density SNP panel could be prohibitive for all but the largest 98 

aquaculture breeding companies. Several strategies have been proposed to reduce the 99 

cost of genotyping for genomic selection in aquaculture via low density SNP panels, 100 

including within-family genomic selection (Lillehammer et al. 2013) and the use of 101 

genotyping strategies including imputation from low to high density SNPs (Kijas et al. 102 

2016; Tsai et al. 2017). Genotype-by-sequencing technologies are also likely to help 103 

reduce costs in the near future given the continuously decreasing costs of sequencing 104 

and the advent of new sequencing technologies suitable for low to medium scale SNP 105 

genotyping, such as RAD-seq or GT-seq (Robledo et al. 2017). Reducing the cost of 106 

genomic selection will be critical to implement genomic selection in most aquaculture 107 

breeding programs, and in this sense improving the cost-effectiveness of genomic 108 

selection will likely be an important area of research in the coming years (Lillehammer 109 

et al. 2013). 110 

Previous studies on host resistance to AGD in salmon have found estimates of 111 

heritability ranging from 0.16 to 0.48 (Taylor et al. 2007, 2009). The objectives of this 112 

study were a) estimate genetic variance of amoebic gill disease resistance in 113 

experimentally challenged Atlantic salmon, b) investigate the architecture of the trait 114 

using a single-SNP genome-wide association study (single-SNP GWAS) and regional 115 

heritability mapping, c) explore genomic selection using SNP markers and / or pedigree, 116 

and e) explore different marker densities with a view to future improvement of cost-117 

effectiveness of genomic selection within commercial breeding programs.  118 

 119 

MATERIALS AND METHODS 120 

Challenge experiments 121 
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An AGD challenge experiment using 1,481 Atlantic post-smolt salmon (~18 months, 122 

mean weight ~700 g) originating from a commercial breeding programme (Landcatch, 123 

UK) was conducted by distributing the fish equally into 2 x 4 m seawater tanks in the 124 

experimental facilities of Machrihanish ( Scotland, United Kingdom). Seeder fish with a 125 

uniform level of AGD infection were produced by cohabitation with infected fish from 126 

an in vivo culture. The challenge was then performed by cohabitation of infected seeder 127 

fish at a ratio of 15% seeder to naïve fish, allowing three separate cycles of infection 128 

with a treatment and recovery period after the first two (Taylor et al. 2009). For the first 129 

two challenges, fresh water treatment was performed 21 days after challenge, followed 130 

by a week of recovery. The disease was allowed to progress until the terminal sampling 131 

point in the third challenge. Fish were sampled and phenotypes were recorded during 132 

three consecutive days. A subjective gill lesion score of the order of severity ranging 133 

from 0 to 5 was recorded for both gills (Table 1; Taylor et al. 2016). These gill lesion 134 

scores were recorded by a single operator, who referred to pictures to guide 135 

classification. Some fish were scored by additional operators, and the scores never 136 

differed by > 0.5. Further, one of the gills was stored in ethanol for qPCR analysis of 137 

amoebic load using Neoparamoeba perurans specific primers. Amoebic load has 138 

previously been used as a suitable indicator trait for resistance to AGD in salmon 139 

(Taylor et al. 2009). The challenged fish belonged to 312 different families with 1 to 37 140 

fish per family. All fish were phenotyped for mean gill score (mean of the left gill and 141 

right gill scores) and amoebic load (qPCR values using Neoparamoeba perurans 142 

specific primers, amplified from one of the gills). All phenotypic information is 143 

available in File S1. 144 

 145 
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All animals were reared in accordance with relevant national and EU legislation 146 

concerning health and welfare. The challenge experiment was performed by the Marine 147 

Environmental Research Laboratory (Machrihanish, UK) under approval of the ethics 148 

review committee of the University of Stirling (Stirling, UK) and according to Home 149 

Office license requirements. Landcatch are accredited participants in the RSPCA 150 

Freedom Foods standard, the Scottish Salmon Producers Organization Code of Good 151 

Practice, and the EU Code-EFABAR Code of Good Practice for Farm Animal Breeding 152 

and Reproduction Organizations. 153 

 154 

Estimation of Amoebic load 155 

Sampled whole gills were weighed and combined with an equal amount (wt / vol) 10 156 

mM Tris, 1 mM EDTA, pH 8.0. Samples were then homogenised using a Qiagen 157 

TissueLyser II (Qiagen, Manchester, UK) following the manufacturers 158 

recommendations. Total DNA was extracted from 50 µl homogenate using Questgene 159 

9600 DNA extraction kits (Questgene, York, UK) following manufacturers protocols. 160 

Amoebic load was determined via duplex qPCR reactions using primer / probe 161 

combinations targetting a 139 bp N.perurans specific 18S sequence (Fringuelli et al., 162 

2012), and a 66 bp fragment of the Atlantic salmon Elongation Factor α 1 gene, (Bruno 163 

et al., 2007). DNA was normalised to 50 ng / µl, and 5 µl was combined into 50 µl 164 

QPCR duplex reactions comprising: 1X Taqman QPCR reaction mix (Questgene, York, 165 

UK), 300 nM N. perurans specific primers, 150 nM N. perurans specific probe, 150 nM 166 

ELFα primers, and 75 nm ELFα probe (Table S1). Ampifications were performed using 167 

a Biorad iCycler iQ QPCR Detection System. The thermal profile consisted of 95
o
 for 168 

10 min and 45 cycles of 15 s denaturation at 95
o
 / 30 s annealing/extension at 56

o
. 169 

Fluorescence in both FAM and HEX channels was acquired during the 170 
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annealing/extension stage. Ct (threshold cycle) values were recorded and the level of N. 171 

perurans load was normalized against the ELF internal control by computing the ratio 172 

Equivalent Target Amount (ETA) N. perurans : ETA ELFα. 173 

 174 

Genotyping 175 

DNA was extracted from fin tissue samples using the DNeasy 96 tissue DNA extraction 176 

kit (Qiagen, UK) and samples were genotyped using an Illumina combined species 177 

Atlantic salmon and rainbow trout SNP array (~17K SNPs, File S2), designed from a 178 

subset of SNPs from a higher density array (Houston et al. 2014). Genotypes (File S3) 179 

were filtered and removed according to the following criteria: SNP call-rate < 0.9, 180 

individual call-rate < 0.9, FDR rate for high individual heterozygosity < 0.05, identity-181 

by-state > 0.95 (both individuals removed), Hardy-Weinberg equilibrium FDR p-value 182 

< 0.05, minor allele frequency < 0.05. After this filtering, a total of 1,430 fish and 7,168 183 

SNPs remained for further analysis. The large number of SNPs removed by filtering is 184 

due to the lack of informativeness of the rainbow trout SNPs in these Atlantic salmon 185 

samples. 186 

Estimation of genetic parameters 187 

Gill score and gill qPCR data were analysed using linear mixed models, fitting effects 188 

of collection date (3 levels) and tank (2 levels) as fixed effects and animal as a random 189 

effect. The additive effect was estimated using both the genomic kinship matrix (G-190 

matrix) and the pedigree (A-matrix). Heritabilities were estimated by ASReml 3.0 191 

(Gilmour et al. 2014) fitting the following linear mixed model: 192 

y = μ + Xb + Za + e, 193 
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where y is a vector of observed phenotypes, μ is the overall mean of phenotype records, 194 

b is the vector of fixed effects of collection date and tank, a is a vector of additive 195 

genetic effects distributed as ~N(0,Gσ
2
a) or N(0,Aσ

2
a) where σ

2
a is the additive 196 

(genetic) variance, G and A are the genomic and pedigree relationship matrices, 197 

respectively. X and Z are the corresponding incidence matrices for fixed and additive 198 

effects, respectively, and e is a vector of residuals. The genomic relationship matrix was 199 

constructed by the GenABEL R package (Aulchenko et al. 2007) using the method of 200 

VanRaden (VanRaden 2008) and then inverted by applying a standard R function. 201 

Phenotypic correlations between traits and genetic correlations were estimated using 202 

bivariate analyses implemented in ASReml 3.0 (Gilmour et al. 2014) fitting the linear 203 

mixed model described above. 204 

Single-SNP genome-wide association study 205 

The single-SNP GWAS was performed using the GenABEL R package (Aulchenko et 206 

al. 2007) by applying the mmscore function (Chen and Abecasis, 2007), which accounts 207 

for the relatedness between individuals applied through the genomic kinship matrix. 208 

Significance thresholds were calculated using a Bonferroni correction where genome-209 

wide significance was defined as 0.05 divided by number of independently segregating 210 

SNPs (Duggal et al. 2008) and suggestive as one false positive per genome scan (1 / 211 

number of independently segregating SNPs). The number of independently segregating 212 

SNPs was calculated using Plink v.1.9 (Chang et al. 2015) accounting for linkage 213 

disequilibrium among the consecutive SNPs. SNPs showing r
2
 values > 0.9 were 214 

considered linked.  215 

Regional heritability mapping 216 

A regional heritability mapping (RHM) analysis (Nagamine et al. 2012; Uemoto et al. 217 

2013) was performed where the genome was divided into overlapping regions 218 
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consisting of 20 sequential SNPs and overlapping by 10 SNPs using Dissect v.1.12.0 219 

(Canela-Xandri et al. 2015). The significance of the regional heritability for each 220 

window was evaluated using a log likelihood ratio test statistic (LRT) comparing the 221 

global model fitting all markers with the model only fitting SNPs in a specific genomic 222 

region (File S4). These windows overlap and therefore the significance threshold was 223 

determined using a Bonferroni correction using half the number of tested windows. 224 

Genomic prediction 225 

The accuracy of genomic selection was estimated by five replicates of 5-fold cross-226 

validation analysis (training set 80%, validation set 20%). The phenotypes recorded in 227 

the validation population were masked and breeding values were estimated using 228 

ASReml 3.0 using the linear mixed model described above. Prediction accuracy was 229 

calculated as the correlation between the predicted EBVs of the validation set and the 230 

actual phenotypes divided by the square root of the heritability estimated in the 231 

validation population [~ r(y1 , y2) / 
2
√h

2 
]. Genomic best linear unbiased prediction 232 

(GBLUP) was applied to predict the masked phenotypes of the validation sets and the 233 

resulting prediction accuracy was compared to that of pedigree-based BLUP (PBLUP). 234 

The bias of the EBVs was estimated as the regression coefficient of the phenotypes on 235 

the predicted EBVs. Since medium-density SNP array genotyping can be expensive, we 236 

also evalutated the impact of reduced SNP density on prediction accuracy by using 237 

subsets of the SNP data for the GBLUP. To choose the SNPs for the (pseudo) low 238 

density panels we tried two different strategies: 1) we progressively increased the 239 

minimum allele frequency threshold in increments of 0.05 (maf, 0.05, 0.10, 0.15, …) 240 

resulting in genotype datasets with progresively lower SNP density and progressively 241 

higher MAF; and 2) we iteratively removed the SNP showing the lowest mean distance 242 
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to the previous and the next SNP on the genome, resulting in datasets of evenly spaced 243 

genotypes.  244 

Data availability 245 

Primers and probes to perform amoebic load estimation by qPCR are provided in Table 246 

S1. Phenotypic data of the fish used in this study is available in File S1. Note that gill 247 

scores correspond to an experimental challenge, gill scores higher than 0.5-1 are rarely 248 

encountered in Landcatch commercial facilities. Markers included in the SNP array and 249 

their position in the Atlantic salmon genome can be found in File S2. Genotypes of the 250 

fish used in this study are available in File S3. The regional heritability mapping model 251 

is detailed in File S4. 252 

 253 

RESULTS AND DISCUSSION 254 

The means and standard deviations for AGD resistance traits were 2.79 ± 0.85 and 255 

31.36 ± 3.24 for the gill score and qPCR amoebic load, respectively. Moderate 256 

heritability estimates were observed for both phenotypes, which ranged between 0.25 257 

and 0.36 (Table 2), and both the phenotypic and genetic correlations between the two 258 

traits were high and positive (0.81 and ~1 respectively). 259 

 260 

A previous study on AGD disease resistance within the Tasmanian Atlantic salmon 261 

population found similar heritability estimates, ranging from 0.16 for gross gill score 262 

(similar to mean gill score here) to 0.35 for digital image gill score (Taylor et al. 2007). 263 

Higher heritability estimates were obtained in the study of Taylor et al. (2009) , which 264 

varied from 0.23 to 0.48 for mean gill score depending on the number of rounds of re-265 

infection. The highest heritability, 0.48, corresponded to the third challenge trial after 266 
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two rounds of infection and subsequent freshwater treatment, as in our study. This 267 

challenge model is based on results from Taylor et al. (2009) which showed that the gill 268 

scores from the third challenge is the most accurate predictor of ultimate survival, 269 

potentially implying genetic variation in the adaptive immune response.   270 

Similar heritability estimates were obtained for host resistance to sea lice; ~0.2 to 0.3 271 

for the North Atlantic sea louse (Lepeophtheirus salmonis; Kolstad et al. 2005; Gjerde 272 

et al. 2011; Gharbi et al. 2015; Tsai et al. 2016), and 0.1-0.3 for the Pacific sea louse 273 

(Caligus rogercresseyi; Lhorente et al. 2012; Yáñez et al. 2014a; Correa et al. 2016). 274 

Similarly, the heritability of resistance to Gyrodactylus salaris, another ectoparasite 275 

mainly affecting wild Atlantic salmon, was estimated to be 0.32 (Salte et al. 2010). 276 

These heritabilities are comparable to estimates for host resistance to bacterial and viral 277 

infections (Ødegard et al. 2011; Yáñez et al. 2014b), and imply that selective breeding 278 

for improved resistance to parasites in salmon is a plausible goal.   279 

 280 

Single-SNP genome-wide association analysis and regional heritability mapping 281 

The single-SNP GWAS revealed no major QTL regions that reached the genome-wide 282 

significance threshold for both gill score and amoebic load (Figure 1). However, there 283 

were two suggestive QTL identified for both traits on chromosome 18, seemingly 284 

located in two non-overlapping regions around 9-12 Mb and 54-61 Mb respectively, 285 

each explaining ~4 % of the additive genetic variance (Table 3). The most significant 286 

SNP for amoebic load was observed at the distal end of chromosome 16. There were 287 

other genomic regions that either reach suggestive significance but only for one of the 288 

traits (i.e. distal end of chromosome 16) or are close (chromosomes 6, 17 or 22), and 289 

these could also be QTL of moderate effect (~3-4 % of the additive genetic variance, 290 

Table 3) that might have been significant with a larger sample size.  291 
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 292 

The QTL identified by regional heritability mapping (RHM) were consistent with the 293 

results of the single-SNP GWAS, with two regions in chromosome 18 showing the 294 

highest significance for both mean gill score and amoebic load (Figure 2). These 295 

regions explained between 9.5 and 11.6 % of the genetic variance respectively, and 296 

contained the most significant SNPs detected by the single-SNP GWAS. Another region 297 

in chromosome 18 between 25 and 42 Mb explained ~20 % of the heritability, but its 298 

significance was lower. The SNPs in this large region between the two putative QTL 299 

may be picking up on effects arising from either or both of the flanking regions due to 300 

linkage disequilibrium. Further, regions in chromosomes 17, 25 and 26 almost reached 301 

nominal significance for amoebic load, explaining >10 % of the genetic variance. The 302 

most important discrepancy is in the distal region of chromosome 16, which shows no 303 

significant association in RHM but held the most significant marker in the amoebic load 304 

single-SNP GWAS. This difference might be explained by the high recombination rates 305 

found in the extremes of the chromosomes in Atlantic salmon (e.g. Tsai et al. 2016); the 306 

significant SNP was the penultimate marker in chromosome 16. RHM uses information 307 

from several consecutive markers, and has been shown to have an advantage over 308 

single-SNP GWAS to explain part of the typical missing heritability of single-SNP 309 

GWA studies and to detect QTL of small effects which otherwise would not be detected 310 

using information from single SNPs (Nagamine et al. 2012, Uemoto et al. 2013, Riggio 311 

and Pong-Wong, 2014; Shirali et al. 2016).  312 

Our results point towards a polygenic architecture of resistance to AGD, but potentially 313 

including a few QTL explaining moderate levels of the genetic variation. Genotyping 314 

additional AGD-challenged and phenotyped samples would help provide evidence in 315 

support or against the existance of these QTL. Further, a higher SNP density could 316 
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possibly identify additional QTL not in linkage disequilibrium with the SNPs in this 317 

study, help to fine map the ones reported here, and possibly increase the estimates of 318 

genetic variation explained by the QTL. 319 

 320 

While a few major disease resistance loci have been described, such as for viral 321 

infectious pancreatic necrosis in Atlantic salmon (Houston et al. 2008, Moen et al. 322 

2009), the majority of disease resistance traits for aquaculture species are polygenic in 323 

nature (Houston 2017). Polygenic architecture has been observed for host resistance to 324 

sea lice (Tsai et al. 2016), Piscirickettsia salmonis (Correa et al. 2015) in Atlantic 325 

salmon, pasteurellosis in gilthead sea bream (Palaiokostas et al. 2016) and Gyridactylus 326 

salaris in salmon (Gilbey et al. 2006). Other examples of putative major QTL include 327 

whirling disease in rainbow trout, caused by the myxosporean parasite Myxobolus 328 

cerebralis, which explains up to 86 % of phenotypic variance depending on the family 329 

(Baerwald et al. 2011), bacterial cold water disease in trout where 27 – 61 % of the 330 

genetic variation is explained by major QTL depending on the line (Vallejo et al. 2017), 331 

and Pancreas Disease in Atlantic salmon where approximately 20 % of the genetic 332 

variation is explained by the largest QTL (Gonen et al. 2015). While resistance to 333 

parasitic disease does tend to show a polygenic architecture, and AGD is no exception, 334 

the putative QTL region(s) of moderate effect identified merit validation tests in 335 

independent populations, and functional genomic and resequencing studies to identify 336 

putative underlying genes and mechanisms. 337 

 338 

Genomic selection accuracy 339 
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Using a 5-fold cross-validation analysis, the prediction accuracy with the genomic 340 

relationship (G) matrix was ~ 18 % higher than with the pedigree (A) matrix for both 341 

mean gill score and amoebic load, and GBLUP predictions showed practically no bias 342 

(Table 4). Prediction accuracies obtained for amoebic load measured by qPCR were 343 

~20% higher than those of mean gill score, which may be due to the wider range of the 344 

amoebic load trait. Taylor et al. (2007) found that gill damage scores obtained using 345 

image analysis or histopathology showed high positive genetic correlation, but 346 

correlation between these traits and gill score was lower. The prediction accuracy 347 

results from the current study suggest genomic selection will significantly outperform 348 

pedigree-based selection for AGD resistance, and that both gill score and qPCR 349 

measures of amoebic load are useful traits for selection for AGD resistance. 350 

 351 

Since genotyping with medium or high-density SNP arrays is relatively expensive, and 352 

aquaculture species tend to have closely related animals in training and validation 353 

populations (e.g. in ‘sib testing’ schemes), well designed low density genotyping panels 354 

may be useful in genomic selection. When SNP density was reduced either via 355 

progressive increase in MAF thresholds or selecting evenly-spaced sets of markers, 356 

accuracy remained relatively stable until 1,808 SNPs where a gradual drop off in 357 

accuracy was observed (Figure 3). However, even at very low SNP density of 435 SNPs 358 

the accuracy of prediction was higher using GBLUP than PBLUP, except for Amoebic 359 

load estimated using the evenly spaced SNPs which resulted in an accuracy similar to 360 

that of PBLUP. 361 

 362 

The results for genomic prediction of breeding values are generally consistent with 363 

published observations for aquaculture species to date. For host ressitance to sea lice, 364 
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marked gains in accuracy were observed, from 10 to 52 % depending on the population 365 

studied (Ødegard et al. 2014; Tsai et al. 2016); and recently different genomic selection 366 

models (ssGBLUP, wssGBLUP, BayesB) have been shown to almost double the 367 

prediction accuracy for bacterial cold water disease in rainbow trout compared to 368 

pedigree-based estimates (Vallejo et al. 2017). Interestingly, both studies on host 369 

resistance to sea lice in salmon showed practically no improvement in prediction 370 

accuracy when SNP density was increased above 5K (Ødegard et al. 2014; Tsai et al. 371 

2016). As shown in the current study, genomic prediction accuracy is higher compared 372 

to pedigree-based prediction even when we use very low density genotyping (a few 373 

hundred SNPs). This is somewhat surprising given the size of the salmon genome (~3 374 

Gb, Lien et al. 2016), but probably reflects the close relationship between the training 375 

set and the reference set in the cross validation design – i.e. full and half siblings will 376 

occur in both sets. The high accuracy with low marker density may also reflect aspects 377 

of the salmon population history, for example relatively low effective population size 378 

and past admixture may be expected to result in long-range LD and this may increase 379 

the predictive ability of a sparse SNP marker set. 380 

Genotyping costs can be an important hurdle for the application of genomic selection, 381 

especially for small companies and breeding programmes. For example, in mass 382 

spawning species that require genotyping to ascertain the pedigree, genomic selection 383 

could potentially be applied without a major genotyping cost increase. Further, this can 384 

be combined with genotyping strategies and imputation to improve cost-effectiveness, 385 

e.g. Tsai et al. (2017) showed that imputation from 250 SNPs to ~25K led to an 386 

improvement in prediction accuracy of 21 % compared to pedigree prediction. Such 387 

strategies may increase cost-effectiveness and therefore uptake of genomic selection in 388 

aquaculture breeding, with beneficial impact on disease resistance and control. 389 
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 390 

CONCLUSIONS 391 

Host resistance to AGD in Atlantic salmon is moderately heritable (h
2
 ~ 0.25 - 0.30) and 392 

can be measured using indicator traits such as  gill score or amoebic load measured by 393 

qPCR. The genetic architecture of AGD resistance appears to be polygenic, but with 394 

two suggestive QTL explaining up to 11 % of the genetic variance on chromosome 18, 395 

and other non-significant regions accounting for a similar amount of variance. These 396 

possible QTL should be tested in independent populations, and may form the basis for 397 

identification of underlying causative genes. Genomic prediction accuracy was 398 

substantially higher (~18%) when using genomic relationships rather than pedigree-399 

based relationships with a ~7K SNP panel, and remained so even when marker density 400 

substantially reduced. Since AGD is a large threat for salmon aquaculture in most major 401 

salmon production countries, genomic selection is likely to be an important component 402 

of breeding programs to help tackle this disease via genetic improvement of host 403 

resistance. 404 
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 557 

FIGURES 558 

Figure 1. GWAS for resistance to AGD 559 

Single-SNP GWAS results for mean gill score and amoebic load are shown. Horizontal 560 

bars represent Bonferroni corrected significance (red) and nominal signifcance (black). 561 

 562 

Figure 2. Regional heritability mapping for AGD resistance 563 

Regional heritability mapping results for mean gill score and amoebic load are shown. 564 

A) and C) represent the log-ratio test values for each tested region (20 consecutive 565 

SNPs) for mean gill score and amoebic load respectively, horizontal bars represent 566 

Bonferroni corrected significance (red) and nominal significance (black). B) and D) 567 

represent the percentage of additive genetic variance explained by each region for mean 568 

gill score and amoebic load repectively. 569 

 570 

Figure 3. Prediction accuracy for different SNP densities. 571 

Accuracy of genomic prediction (GBLUP) for mean gill score and amoebic load with 572 

different SNP densities, selected based on their minimum allele frequencies (MAF) or 573 

their position in the genome so the markers are evenly spaced (Spaced). Horizontal lines 574 

indicate the accuracy of pedigree selection. 575 

 576 



26 
 

 577 

 578 

 579 

 580 

 581 

TABLES 582 

Table 1. Gill score description 583 

Gill score Level of infection Description  

0 
Clear Healthy red gills, no gross sign of 

infection. 

1 Very light One white spot, light scarring or 

undefined necrotic streaking 

2 Light 2-3 spots / small mucus patch 

3 Moderate Established thickened mucus patches 

or spot groupings up to 20% of the 

total gill area 

4 Advanced Established lesions covering up to 

50% of gill area 

5 Heavy Extensive lesions covering most of the 

gill surface 

 584 

 585 

Table 2. Heritability estimates for the AGD resistance traits 586 

 Pedigree gMatrix 

Mean gill score 0.25 ± 0.06 0.24 ± 0.04 

Amoebic load 0.36 ± 0.07 0.25 ± 0.04 
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 587 

 588 

 589 

 590 

 591 

 592 

Table 3. Top single-SNP GWAS markers for AGD resistance 593 

Mean gill score   Amoebic load 

Chr. Position 
Explained 

gen. var. (%) p-val   Chr. Position 
Explained 

gen. var. (%) p-val 

18 9,010,507 4.81 1.37E-04 
 

16 87,305,577 4.40 1.03E-04 

18 61,003,989 4.05 2.28E-04 
 

18 61,003,989 4.17 1.37E-04 

18 59,141,833 4.13 2.59E-04 
 

18 59,141,833 4.21 1.67E-04 

22 29,458,040 3.89 3.07E-04 
 

17 17,603,968 3.98 3.30E-04 

6 20,420,312 3.76 3.93E-04 
 

18 9,010,507 3.82 5.30E-04 

26 22,182,178 3.21 1.03E-03 
 

26 22,182,178 3.41 5.60E-04 

9 65,305,177 3.16 1.13E-03 
 

18 11,619,560 3.20 8.43E-04 

18 54,225,069 3.14 1.17E-03 
 

17 31,447,688 3.19 1.03E-03 

14 85,642,477 3.14 1.18E-03 
 

25 37,782,067 3.05 1.10E-03 

18 9,896,346 3.08 1.30E-03 
 

12 31,597,392 3.06 1.13E-03 

7 46,569,758 3.32 1.37E-03 
 

8 13,396,576 3.17 1.14E-03 

16 87,305,577 3.10 1.40E-03 
 

18 13,403,715 2.99 1.39E-03 

12 31,597,392 3.04 1.45E-03 
 

8 49,527,638 2.85 1.63E-03 

3 82,689,281 3.04 1.46E-03 
 

15 49,527,638 2.79 1.82E-03 

26 14,842,966 3.08 1.47E-03 
 

6 83815992 2.77 1.88E-03 
Chr.: chromosome; gen. var.: genetic variance. 594 

 595 

Table 4. Accuracy and bias of genomic selection 596 

 Pedigree  gMatrix 

 Accuracy Bias  Accuracy Bias 

Mean gill score 0.51 0.90  0.62 1.00 

Amoebic load 0.60 0.88  0.70 0.99 

 597 
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