226 research outputs found
Thermochemical scanning probe lithography of protein gradients at the nanoscale
Patterning nanoscale protein gradients is crucial for studying a variety of cellular processes in vitro. Despite the recent development in nano-fabrication technology, combining nanometric resolution and fine control of protein concentrations is still an open challenge. Here, we demonstrate the use of thermochemical scanning probe lithography (tc-SPL) for defining micro- and nano-sized patterns with precisely controlled protein concentration. First, tc-SPL is performed by scanning a heatable atomic force microscopy tip on a polymeric substrate, for locally exposing reactive amino groups on the surface, then the substrate is functionalized with streptavidin and laminin proteins. We show, by fluorescence microscopy on the patterned gradients, that it is possible to precisely tune the concentration of the immobilized proteins by varying the patterning parameters during tc-SPL. This paves the way to the use of tc-SPL for defining protein gradients at the nanoscale, to be used as chemical cues e.g. for studying and regulating cellular processes in vitro
Comparação de métodos para determinação do carbono orgânico de um latossolo arenoso do Bolsão-sul-mato-grossense.
JIPE 2013
Nanofriction mechanisms derived from the dependence of friction on load and sliding velocity from air to UHV on hydrophilic silicon
This paper examines friction as a function of the sliding velocity and
applied normal load from air to UHV in a scanning force microscope (SFM)
experiment in which a sharp silicon tip slides against a flat Si(100) sample.
Under ambient conditions, both surfaces are covered by a native oxide, which is
hydrophilic. During pump-down in the vacuum chamber housing the SFM, the
behavior of friction as a function of the applied normal load and the sliding
velocity undergoes a change. By analyzing these changes it is possible to
identify three distinct friction regimes with corresponding contact properties:
(a) friction dominated by the additional normal forces induced by capillarity
due to the presence of thick water films, (b) higher drag force from ordering
effects present in thin water layers and (c) low friction due to direct
solid-solid contact for the sample with the counterbody. Depending on
environmental conditions and the applied normal load, all three mechanisms may
be present at one time. Their individual contributions can be identified by
investigating the dependence of friction on the applied normal load as well as
on the sliding velocity in different pressure regimes, thus providing
information about nanoscale friction mechanisms
Adequação do método para a determinação de fósforo em solo com resina trocadora de íons.
JIPE 2013
Study of Alpha-Sigma Phase Transformation in Mechanically Alloyed Fe-Cr-Sn Alloys
The solubility of tin is significantly extended by mechanical alloying in near equiatomic Fe-Cr alloys. The influences of Sn concentration and of grain size on the kinetics of formation of the sigma-phase have been studied using different techniques. The sigma-phase formation is much faster for as-milled alloys than it is for conventional alloys. The sigma-phase formation rate decreases with the increase of Sn concentration in alloys with nanometer-sized grains as it does in coarse-grained alloys. The mechanisms which are responsible for the slowing-down of the alpha-sigma transformation are different in both kinds of alloys
The analysis of European lacquer : optimization of thermochemolysis temperature of natural resins
In order to optimize chromatographic analysis of European lacquer, thermochemolysis temperature was evaluated for the analysis of natural resins. Five main ingredients of lacquer were studied: sandarac, mastic, colophony, Manila copal and Congo copal. For each, five temperature programs were tested: four fixed temperatures (350, 480, 550, 650 degrees C) and one ultrafast thermal desorption (UFD), in which the temperature rises from 350 to 660 degrees C in 1 min. In total, the integrated signals of 27 molecules, partially characterizing the five resins, were monitored to compare the different methods. A compromise between detection of compounds released at low temperatures and compounds formed at high temperatures was searched. 650 degrees C is too high for both groups, 350 degrees C is best for the first, and 550 degrees C for the second. Fixed temperatures of 480 degrees C or UFD proved to be a consensus in order to detect most marker molecules. UFD was slightly better for the molecules released at low temperatures, while 480 degrees C showed best compounds formed at high temperatures
Nanoscale tunable reduction of graphene oxide for graphene electronics
International audienceGraphene is now recognized as the most likely carbon-based successor material for CMOS electronics. Recently, interest in graphene oxide (GO) has risen for producing large-scale flexible conductors and for its potential to open an electronic gap in graphene structures. We report on a means to tune the topographical and electrical properties of graphene-based materials with nanoscopic resolution by local thermal reduction of GO with a nano-size tip. The reduced GO nanostructures show an increase in conductivity up to four orders of magnitude as compared to pristine GO. No sign of tip wear or sample tearing was observed. Variably conductive nanoribbons with dimensions down to 12 nm have been produced in oxidized epitaxial graphene films in a single step that is clean, rapid and reliable
Ultrahard carbon film from epitaxial two-layer graphene
Atomically thin graphene exhibits fascinating mechanical properties, although
its hardness and transverse stiffness are inferior to those of diamond. To
date, there hasn't been any practical demonstration of the transformation of
multi-layer graphene into diamond-like ultra-hard structures. Here we show that
at room temperature and after nano-indentation, two-layer graphene on SiC(0001)
exhibits a transverse stiffness and hardness comparable to diamond, resisting
to perforation with a diamond indenter, and showing a reversible drop in
electrical conductivity upon indentation. Density functional theory
calculations suggest that upon compression, the two-layer graphene film
transforms into a diamond-like film, producing both elastic deformations and
sp2-to-sp3 chemical changes. Experiments and calculations show that this
reversible phase change is not observed for a single buffer layer on SiC or
graphene films thicker than 3 to 5 layers. Indeed, calculations show that
whereas in two-layer graphene layer-stacking configuration controls the
conformation of the diamond-like film, in a multilayer film it hinders the
phase transformation.Comment: Published online on Nature Nanotechnology on December 18, 201
The interplay between apparent viscosity and wettability in nanoconfined water
Understanding and manipulating fluids at the nanoscale is a matter of growing scientific and technological interest. Here we show that the viscous shear forces in nanoconfined water can be orders of magnitudes larger than in bulk water if the confining surfaces are hydrophilic, whereas they greatly decrease when the surfaces are increasingly hydrophobic. This decrease of viscous forces is quantitatively explained with a simple model that includes the slip velocity at the water surface interface. The same effect is observed in the energy dissipated by a tip vibrating in water perpendicularly to a surface. Comparison of the experimental data with the model shows that interfacial viscous forces and compressive dissipation in nanoconfined water can decrease up to two orders of magnitude due to slippage. These results offer a new understanding of interfacial fluids, which can be used to control flow at the nanoscale
Velocity tuning of friction with two trapped atoms
Our ability to control friction remains modest, as our understanding of the underlying microscopic processes is incomplete. Atomic force experiments have provided a wealth of results on the dependence of nanofriction on structure velocity and temperature but limitations in the dynamic range, time resolution, and control at the single-atom level have hampered a description from first principles. Here, using an ion-crystal system with single-atom, single-substrate-site spatial and single-slip temporal resolution we measure the friction force over nearly five orders of magnitude in velocity, and contiguously observe four distinct regimes, while controlling temperature and dissipation. We elucidate the interplay between thermal and structural lubricity for two coupled atoms, and provide a simple explanation in terms of the Peierls–Nabarro potential. This extensive control at the atomic scale enables fundamental studies of the interaction of many-atom surfaces, possibly into the quantum regime
- …
