567 research outputs found
Components of functional diversity revisited: A new classification and its theoretical and practical implications
Functional diversity is regarded as a key concept for understanding the link between ecosystem function and biodiversity. The different and ecologically well-defined aspects of the concept are reflected by the so-called functional components, for example, functional richness and divergence. Many authors proposed that components be distinguished according to the multivariate technique on which they rely, but more recent studies suggest that several multivariate techniques, providing different functional representations (such as dendrograms and ordinations) of the community can in fact express the same functional component. Here, we review the relevant literature and find that (1) general ecological acceptance of the field is hampered by ambiguous terminology and (2) our understanding of the role of multivariate techniques in defining components is unclear. To address these issues, we provide new definitions for the three basic functional diversity components namely functional richness, functional divergence and functional regularity. In addition, we present a classification of presence-/absence-based approaches suitable for quantifying these components. We focus exclusively on the binary case for its relative simplicity. We find illogical, as well as logical but unused combinations of components and representations; and reveal that components can be quantified almost independently from the functional representation of the community. Finally, theoretical and practical implications of the new classification are discussed
No evidence of increased fire risk due to agricultural land abandonment in Sardinia (Italy)
Abstract. Different land cover types are related to different levels of fire hazard through their vegetation structure and fuel load composition. Therefore, understanding the relationships between landscape changes and fire behavior is of crucial importance for developing adequate fire fighting and fire prevention strategies for a changing world. In the last decades the abandonment of agricultural lands and pastoral activities has been the major driver of landscape transformations in Mediterranean Europe. As agricultural land abandonment typically promotes an increase in plant biomass (fuel load), a number of authors argue that vegetation succession in abandoned fields and pastures is expected to increase fire hazard. In this short paper, based on 28 493 fires in Sardinia (Italy) in the period 2001–2010, we show that there is no evidence of increased probability of fire ignition in abandoned rural areas. To the contrary, in Sardinia the decreased human impact associated with agricultural land abandonment leads to a statistically significant decrease of fire ignition probability
Autonomous 3D geometry reconstruction through robot-manipulated optical sensors
Many industrial sectors face increasing production demands and the need to reduce costs, without compromising the quality. The use of robotics and automation has grown significantly in recent years, but versatile robotic manipulators are still not commonly used in small factories. Beside of the investments required to enable efficient and profitable use of robot technology, the efforts needed to program robots are only economically viable in case of large lot sizes. Generating robot programs for specific manufacturing tasks still relies on programming trajectory waypoints by hand. The use of virtual simulation software and the availability of the specimen digital models can facilitate robot programming. Nevertheless, in many cases, the virtual models are not available or there are excessive differences between virtual and real setups, leading to inaccurate robot programs and time-consuming manual corrections. Previous works have demonstrated the use of robot-manipulated optical sensors to map the geometry of samples. However, the use of simple user-defined robot paths, which are not optimized for a specific part geometry, typically causes some areas of the samples to not be mapped with the required level of accuracy or to not be sampled at all by the optical sensor. This work presents an autonomous framework to enable adaptive surface mapping, without any previous knowledge of the part geometry being transferred to the system. The novelty of this work lies in enabling the capability of mapping a part surface at the required level of sampling density, whilst minimizing the number of necessary view poses. Its development has also led to an efficient method of point cloud down-sampling and merging. The article gives an overview of the related work in the field, a detailed description of the proposed framework and a proof of its functionality through both simulated and experimental evidences
Gribov horizon and i-particles: about a toy model and the construction of physical operators
Restricting the functional integral to the Gribov region leads to a
deep modification of the behavior of Euclidean Yang-Mills theories in the
infrared region. For example, a gluon propagator of the Gribov type,
, can be viewed as a propagating pair of
unphysical modes, called here -particles, with complex masses . From this viewpoint, gluons are unphysical and one can see them as
being confined. We introduce a simple toy model describing how a suitable set
of composite operators can be constructed out of -particles whose
correlation functions exhibit only real branch cuts, with associated positive
spectral density. These composite operators can thus be called physical and are
the toy analogy of glueballs in the Gribov-Zwanziger theory.Comment: 35 pages, 10 .pdf figures. v2: version accepted for publication in
Physical Review
The ternary diagram of functional diversity
Among the many diversity indices in the ecologist toolbox, measures that can be partitioned into additive terms are particularly useful as the different components can be related to different ecological processes shaping community structure. In this paper, an additive diversity decomposition is proposed to partition the diversity structure of a given community into three complementary fractions: functional diversity, functional redundancy and species dominance. These three components sum up to one. Therefore, they can be used to portray the community structure in a ternary diagram. Since the identification of community-level patterns is an essential step to investigate the main drivers of species coexistence, the ternary diagram of functional diversity can be used to relate different facets of diversity to community assembly processes more exhaustively than looking only at one index at a time. The value of the proposed diversity decomposition is demonstrated by the analysis of actual abundance data on plant assemblages sampled in grazed and ungrazed grasslands in Tuscany (Central Italy)
A systematic review and meta-analysis of randomized trials of carotid endarterectomy vs stenting
ObjectiveThe purpose of this systematic review and meta-analysis was to synthesize the available evidence derived from randomized controlled trials (RCTs) regarding the relative efficacy and safety of endarterectomy vs stenting in patients with carotid artery disease.MethodsWe searched MEDLINE, EMBASE, Current Contents, and Cochrane CENTRAL through July 2010 to update previous systematic reviews. Two reviewers determined trial eligibility and extracted descriptive, methodologic, and outcome data (death, nonfatal stroke, and nonfatal myocardial infarction). Random-effects meta-analysis was used to pool relative risks and the I2 statistic was used to assess heterogeneity.ResultsThirteen RCTs proved eligible enrolling 7484 patients, of which 80% had symptomatic disease. Methodological quality was moderate to high, with better quality among RCTs published after 2008. Compared with carotid endarterectomy, stenting was associated with increased risk of any stroke (relative risk [RR], 1.45; 95% confidence interval [CI], 1.06-1.99; I2 = 40%), decreased risk of periprocedural myocardial infarction (MI; RR, 0.43; 95% CI, 0.26- 0.71; I2 = 0%), and nonsignificant increase in mortality (RR, 1.40; 95% CI, 0.85-2.33; I2 = 5%). When analysis was restricted to the two most recent trials with the better methodology and more contemporary technique, we found stenting to be associated with a significant increase in the risk of any stroke (RR, 1.82; 95% CI, 1.35-2.45) and mortality (RR, 2.53; 95% CI, 1.27-5.08) and a nonsignificant reduction of the risk of MI (RR, 0.39; 95% CI, 0.12-1.23). For every 1000 patients opting for stenting rather than endarterectomy, 19 more patients would have strokes and 10 fewer would have MIs. Outcome data in asymptomatic patients were sparse and imprecise; hence, these conclusions apply primarily to symptomatic patients.ConclusionCompared with endarterectomy, carotid artery stenting (CAS) significantly increases the risk of any stroke and decreases the risk of MI
Time-lapsing biodiversity: an open source method for measuring diversity changes by remote sensing
Understanding biodiversity changes in time is crucial to promptly provide management practices against diversity loss. This is overall true when considering global scales, since human-induced global change is expected to make significant changes on the Earth's biota. Biodiversity management and planning is mainly based on field observations related to community diversity, considering different taxa. However, such methods are time and cost demanding and do not allow in most cases to get temporal replicates. In this view, remote sensing can provide a wide data coverage in a short period of time. Recently, the use of Rao's Q diversity as a measure of spectral diversity has been proposed in order to explicitly take into account differences in a neighbourhood considering abundance and relative distance among pixels. The aim of this paper was to extend such a measure over the temporal dimension and to present an innovative approach to calculate remotely sensed temporal diversity. We demonstrated that temporal beta-diversity (spectral turnover) can be calculated pixel-wise in terms of both slope and coefficient of variation and further plotted over the whole matrix / image. From an ecological and operational point of view, for prioritisation practices in biodiversity protection, temporal variability could be beneficial in order to plan more efficient conservation practices starting from spectral diversity hotspots in space and time. In this paper, we delivered a highly reproducible approach to calculate spatio-temporal diversity in a robust and straightforward manner. Since it is based on open source code, we expect that our method will be further used by several researchers and landscape managers
Percolation in real Wildfires
This paper focuses on the statistical properties of wild-land fires and, in
particular, investigates if spread dynamics relates to simple invasion model.
The fractal dimension and lacunarity of three fire scars classified from
satellite imagery are analysed. Results indicate that the burned clusters
behave similarly to percolation clusters on boundaries and look more dense in
their core. We show that Dynamical Percolation reproduces this behaviour and
can help to describe the fire evolution. By mapping fire dynamics onto the
percolation models the strategies for fire control might be improved.Comment: 8 pages, 3 figures, epl sytle (epl.cls included
- …