359 research outputs found
Fast Switching of Bistable Magnetic Nanowires Through Collective Spin Reversal
The use of magnetic nanowires as memory units is made possible by the
exponential divergence of the characteristic time for magnetization reversal at
low temperature, but the slow relaxation makes the manipulation of the frozen
magnetic states difficult. We suggest that finite-size segments can show a fast
switching if collective reversal of the spins is taken into account. This
mechanism gives rise at low temperatures to a scaling law for the dynamic
susceptibility that has been experimentally observed for the dilute molecular
chain Co(hfac)2NitPhOMe. These results suggest a possible way of engineering
nanowires for fast switching of the magnetization.Comment: 9 pages, 3 figures, 20 reference
Collapse of the ESR fine structure throughout the coherent temperature of the Gd-doped Kondo Semiconductor
Experiments on the Electron Spin Resonance (ESR) in the filled
skutterudite (), at temperatures
where the host resistivity manifests a smooth insulator-metal crossover,
provides evidence of the underlying Kondo physics associated with this system.
At low temperatures (below ), behaves
as a Kondo-insulator with a relatively large hybridization gap, and the
ESR spectra displays a fine structure with lorentzian line shape,
typical of insulating media. The electronic gap is attributed to the large
hybridization present in the coherent regime of a Kondo lattice, when Ce
4f-electrons cooperate with band properties at half-filling. Mean-field
calculations suggest that the electron-phonon interaction is fundamental at
explaining the strong 4f-electron hybridization in this filled skutterudite.
The resulting electronic structure is strongly temperature dependent, and at
about the system undergoes an insulator-to-metal
transition induced by the withdrawal of 4f-electrons from the Fermi volume, the
system becoming metallic and non-magnetic. The ESR fine structure
coalesces into a single dysonian resonance, as in metals. Still, our
simulations suggest that exchange-narrowing via the usual Korringa mechanism,
alone, is not capable of describing the thermal behavior of the ESR spectra in
the entire temperature region ( - K). We propose that temperature
activated fluctuating-valence of the Ce ions is the missing ingredient that,
added to the usual exchange-narrowing mechanism, fully describes this unique
temperature dependence of the ESR fine structure observed in
.Comment: 19 pages, 6 figure
Direct determination of the crystal field parameters of Dy, Er and Yb impurities in the skutterudite compound CeFeP by Electron Spin Resonance
Despite extensive research on the skutterudites for the last decade, their
electric crystalline field ground state is still a matter of controversy. We
show that Electron Spin Resonance (ESR) measurements can determine the full set
of crystal field parameters (CFPs) for the Th cubic symmetry (Im3) of the
CeRFeP (R = Dy, Er, Yb, )
skutterudite compounds. From the analysis of the ESR data the three CFPs, B4c,
B6c and B6t were determined for each of these rare-earths at the Ce
site. The field and temperature dependence of the measured magnetization for
the doped crystals are in excellent agreement with the one predicted by the
CFPs Bnm derived from ESR.Comment: 7 pages, 5 figures, to appear in PR
Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field
The static and dynamic properties of the single-chain molecular magnet
[Co(hfac)NITPhOMe] are investigated in the framework of the Ising model
with Glauber dynamics, in order to take into account both the effect of an
applied magnetic field and a finite size of the chains. For static fields of
moderate intensity and short chain lengths, the approximation of a
mono-exponential decay of the magnetization fluctuations is found to be valid
at low temperatures; for strong fields and long chains, a multi-exponential
decay should rather be assumed. The effect of an oscillating magnetic field,
with intensity much smaller than that of the static one, is included in the
theory in order to obtain the dynamic susceptibility . We find
that, for an open chain with spins, can be written as a
weighted sum of frequency contributions, with a sum rule relating the
frequency weights to the static susceptibility of the chain. Very good
agreement is found between the theoretical dynamic susceptibility and the ac
susceptibility measured in moderate static fields ( kOe),
where the approximation of a single dominating frequency turns out to be valid.
For static fields in this range, new data for the relaxation time,
versus , of the magnetization of CoPhOMe at low temperature are
also well reproduced by theory, provided that finite-size effects are included.Comment: 16 pages, 9 figure
Unconventional Metallic Magnetism in LaCrSb{3}
Neutron-diffraction measurements in LaCrSb{3} show a coexistence of
ferromagnetic and antiferromagnetic sublattices below Tc=126 K, with ordered
moments of 1.65(4) and 0.49(4) Bohr magnetons per formula unit, respectively
(T=10 K), and a spin reorientation transition at ~95 K. No clear peak or step
was observed in the specific heat at Tc. Coexisting localized and itinerant
spins are suggested.Comment: PRL, in pres
Glauber slow dynamics of the magnetization in a molecular Ising chain
The slow dynamics (10^-6 s - 10^4 s) of the magnetization in the paramagnetic
phase, predicted by Glauber for 1d Ising ferromagnets, has been observed with
ac susceptibility and SQUID magnetometry measurements in a molecular chain
comprising alternating Co{2+} spins and organic radical spins strongly
antiferromagnetically coupled. An Arrhenius behavior with activation energy
Delta=152 K has been observed for ten decades of relaxation time and found to
be consistent with the Glauber model. We have extended this model to take into
account the ferrimagnetic nature of the chain as well as its helicoidal
structure.Comment: 4 pages, 4 figures (low resolution), 16 references. Submitted to
Physical Review Letter
Surface spin-flop transition in a uniaxial antiferromagnetic Fe/Cr superlattice induced by a magnetic field of arbitrary direction
We studied the transition between the antiferromagnetic and the surface
spin-flop phases of a uniaxial antiferromagnetic [Fe(14 \AA)/Cr(11 \AA] superlattice. For external fields applied parallel to the in-plane easy
axis, the layer-by-layer configuration, calculated in the framework of a
mean-field one-dimensional model, was benchmarked against published polarized
neutron reflectivity data. For an in-plane field applied at an angle with the easy axis, magnetometry shows that the magnetization
vanishes at H=0, then increases slowly with increasing . At a critical value
of , a finite jump in is observed for , while a
smooth increase of is found for . A dramatic
increase in the full width at half maximum of the magnetic susceptibility is
observed for . The phase diagram obtained from
micromagnetic calculations displays a first-order transition to a surface
spin-flop phase for low values, while the transition becomes continuous
for greater than a critical angle, . This is in fair agreement with the experimentally observed results.Comment: 24 pages, 7 figure
Antiferromagnetic domain walls in lightly doped layered cuprates
Recent ESR data shows rotation of the antiferromagnetic (AF) easy axis in
lightly doped layered cuprates upon lowering the temperature. We account for
the ESR data and show that it has significant implications on spin and charge
ordering according to the following scenario: In the high temperature phase AF
domain walls coincide with (110) twin boundaries of an orthorhombic phase. A
magnetic field leads to annihilation of neighboring domain walls resulting in
antiphase boundaries. The latter are spin carriers, form ferromagnetic lines
and may become charged in the doped system. However, hole ordering at low
temperatures favors the (100) orientation, inducing a pi/4 rotation in the AF
easy axis. The latter phase has twin boundaries and AF domain walls in (100)
planes.Comment: 4 pages, 3 figures (1 eps). v2: no change in content, Tex shadow
problem cleare
- …
