533 research outputs found
C.difficile infection rate in patients with IBD is falling in line with that of the general population
Poster presentatio
Electron localization in sound absorption oscillations in the quantum Hall effect regime
The absorption coefficient for surface acoustic waves in a piezoelectric
insulator in contact with a GaAs/AlGaAs heterostructure (with two-dimensional
electron mobility at T=4.2K) via a small
gap has been investigated experimentally as a function of the frequency of the
wave, the width of the vacuum gap, the magnetic field, and the temperature. The
magnetic field and frequency dependencies of the high-frequency conductivity
(in the region 30-210 MHz) are calculated and analyzed. The experimental
results can be explained if it assumed that there exists a fluctuation
potential in which current carrier localization occurs. The absorption of the
surface acoustic waves in an interaction with two-dimensional electrons
localized in the energy "tails" of Landau levels is discussed.Comment: RevTeX 6 pages+6 EPS pic
Syngenetic sand veins and anti-syngenetic sand wedges, Tuktoyaktuk Coastlands, western Arctic Canada
Sand-sheet deposits of full-glacial age in the Tuktoyaktuk Coastlands, western Arctic Canada, contain syngenetic sand veins 1-21 cm wide and sometimes exceeding 9 m in height. Their tall and narrow, chimney-like morphology differs from that of known syngenetic ice wedges and indicates an unusually close balance between the rate of sand-sheet aggradation and the frequency of thermal-contraction cracking. The sand sheets also contain rejuvenated (syngenetic) sand wedges that have grown upward from an erosion surface. By contrast, sand sheets of postglacial age contain few or sometimes no intraformational sand veins and wedges, suggesting that the climatic conditions were unfavourable for thermal-contraction cracking. Beneath a postglacial sand sheet near Johnson Bay, sand wedges with unusually wide tops (3.9 m) extend down from a prominent erosion surface. The wedges grew vertically downward during deflation of the ground surface, and represent anti-syngenetic wedges. The distribution of sand veins and wedges within the sand sheets indicates that the existence of continuous permafrost during sand-sheet aggradation can be inferred confidently only during full-glacial conditions
Introduction
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69081/2/10.1177_0261927X99018001001.pd
Surface acoustic wave attenuation by a two-dimensional electron gas in a strong magnetic field
The propagation of a surface acoustic wave (SAW) on GaAs/AlGaAs
heterostructures is studied in the case where the two-dimensional electron gas
(2DEG) is subject to a strong magnetic field and a smooth random potential with
correlation length Lambda and amplitude Delta. The electron wave functions are
described in a quasiclassical picture using results of percolation theory for
two-dimensional systems. In accordance with the experimental situation, Lambda
is assumed to be much smaller than the sound wavelength 2*pi/q. This restricts
the absorption of surface phonons at a filling factor \bar{\nu} approx 1/2 to
electrons occupying extended trajectories of fractal structure. Both
piezoelectric and deformation potential interactions of surface acoustic
phonons with electrons are considered and the corresponding interaction
vertices are derived. These vertices are found to differ from those valid for
three-dimensional bulk phonon systems with respect to the phonon wave vector
dependence. We derive the appropriate dielectric function varepsilon(omega,q)
to describe the effect of screening on the electron-phonon coupling. In the low
temperature, high frequency regime T << Delta (omega_q*Lambda
/v_D)^{alpha/2/nu}, where omega_q is the SAW frequency and v_D is the electron
drift velocity, both the attenuation coefficient Gamma and varepsilon(omega,q)
are independent of temperature. The classical percolation indices give
alpha/2/nu=3/7. The width of the region where a strong absorption of the SAW
occurs is found to be given by the scaling law |Delta \bar{\nu}| approx
(omega_q*Lambda/v_D)^{alpha/2/nu}. The dependence of the electron-phonon
coupling and the screening due to the 2DEG on the filling factor leads to a
double-peak structure for Gamma(\bar{\nu}).Comment: 17 pages, 3 Postscript figures, minor changes mad
Sound and Heat Absorption by a 2D Electron Gas in an Odd-Integer Quantized-Hall Regime
The absorption of bulk acoustic phonons in a two-dimensional (2D) GaAs/AlGaAs
heterostructure is studied (in the clean limit) where the 2D electron-gas
(2DEG), being in an odd-integer quantum-Hall state, is in fact a spin
dielectric. Of the two channels of phonon absorption associated with excitation
of spin waves, one, which is due to the spin-orbit (SO) coupling of electrons,
involves a change of the spin state of the system and the other does not. We
show that the phonon-absorption rate corresponding to the former channel (in
the paper designated as the second absorption channel) is finite at zero
temperature (), whereas that corresponding to the latter (designated as the
first channel) vanishes for . The long-wavelength limit, being the
special case of the first absorption channel, corresponds to sound (bulk and
surface) attenuation by the 2DEG. At the same time, the ballistic phonon
propagation and heat absorption are determined by both channels. The 2DEG
overheat and the attendant spin-state change are found under the conditions of
permanent nonequilibrium phonon pumping.Comment: 26 pages, 2 figure
In search of lost hybridity: the French Daniel Deronda
Starting from a set of examples of borrowings from French in George Eliot’s Daniel Deronda, I explore the various ways in which the characters’ and narrator’s use of mixed English–French utterances generates inferences which make the transcending of their mono-cultural self possible. I go on to argue that in Jumeau’s recent French translation of the novel, the reader is not given access to those inferences, resulting in the erasing of an Anglo-European, cosmopolitan identity
- …