3,051 research outputs found
The design and development of a spacecraft appendage tie down mechanism
The design and evolution is described of a spacecraft Appendage Tie Down Mechanism (ATDM). Particular emphasis is paid to the mechanical aspects of using dry lubricants to increase the efficiency of acme threads and worm gearing. The ATDM consists of five major components. These are a dc torque motor, a worm gear speed reducer, the tension bolt (or T-bolt), nut capture and centering jaws and the capture nut. In addition, there are several minor components such as limit switch assemblies and an antibackdrive mechanism which couples the drive motor to the worm shaft. A development model of the ATDM in various configurations was under test for some time. In its latest version, it has successfully completed thermal vacuum testing, vibration testing, and extended life testing
Can muon-induced backgrounds explain the DAMA data?
We present an accurate simulation of the muon-induced background in the DAMA/LIBRA experiment. Muon sampling underground has been performed using the MUSIC/MUSUN codes and subsequent interactions in the rock around the DAMA/LIBRA detector cavern and the experimental setup including shielding, have been simulated with GEANT4.9.6. In total we simulate the equivalent of 20 years of muon data. We have calculated the total muon-induced neutron flux in the DAMA/LIBRA detector cavern as Φμn = 1.0 ×10-9 cm-2s-1, which is consistent with other simulations. After selecting events which satisfy the DAMA/LIBRA signal criteria, our simulation predicts 3.49 ×10-5 cpd/kg/keV which accounts for less than 0.3% of the DAMA/LIBRA modulation amplitude. We conclude from our work that muon-induced backgrounds are unable to contribute to the observed signal modulation
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector
Data from the AMANDA-B10 detector taken during the austral winter of 1997
have been searched for a diffuse flux of high energy extraterrestrial
muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the
universe. This search yielded no excess events above those expected from the
background atmospheric neutrinos, leading to upper limits on the
extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical
confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x
10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV)
which is the most restrictive bound placed by any neutrino detector. When
specific predicted spectral forms are considered, it is found that some are
excluded.Comment: Submitted to Physical Review Letter
Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos
We present the results of a Monte-Carlo study of the sensitivity of the
planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV
energies. A complete simulation of the detector and data analysis is used to
study the detector's capability to search for muon neutrinos from sources such
as active galaxies and gamma-ray bursts. We study the effective area and the
angular resolution of the detector as a function of muon energy and angle of
incidence. We present detailed calculations of the sensitivity of the detector
to both diffuse and pointlike neutrino emissions, including an assessment of
the sensitivity to neutrinos detected in coincidence with gamma-ray burst
observations. After three years of datataking, IceCube will have been able to
detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma
significance, or, in the absence of a signal, place a 90% c.l. limit at a level
E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a
minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst
model following the formulation of Waxman and Bahcall would result in a 5-sigma
effect after the observation of 200 bursts in coincidence with satellite
observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table
Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches
The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless
double-beta decay of Xe-136 using high-pressure xenon gas TPCs with
electroluminescent amplification. A scaled-up version of this technology with
about 1 tonne of enriched xenon could reach in less than 5 years of operation a
sensitivity to the half-life of neutrinoless double-beta decay decay better
than 1E27 years, improving the current limits by at least one order of
magnitude. This prediction is based on a well-understood background model
dominated by radiogenic sources. The detector concept presented here represents
a first step on a compelling path towards sensitivity to the parameter space
defined by the inverted ordering of neutrino masses, and beyond.Comment: 22 pages, 11 figure
- …
