2,107 research outputs found
Investigation of refracting flows for acoustic suppression
An experimental investigation to determine the possibility of using refracting flows for the suppression of aircraft inlet noise is described. Observations of wave refraction in duct flows and measurements of the increase in effectiveness of acoustic linings due to refraction have suggested methods for the design of engine inlet ducts which can either suppress noise internally or direct it to where it causes less annoyance
Evolutionary Subnetworks in Complex Systems
Links in a practical network may have different functions, which makes the
original network a combination of some functional subnetworks. Here, by a model
of coupled oscillators, we investigate how such functional subnetworks are
evolved and developed according to the network structure and dynamics. In
particular, we study the case of evolutionary clustered networks in which the
function of each link (either attractive or repulsive coupling) is updated by
the local dynamics. It is found that, during the process of system evolution,
the network is gradually stabilized into a particular form in which the
attractive (repulsive) subnetwork consists only the intralinks (interlinks).
Based on the properties of subnetwork evolution, we also propose a new
algorithm for network partition which is distinguished by the convenient
operation and fast computing speed.Comment: 4 pages, 4 figure
Statistical correlation analysis for comparing vibration data from test and analysis
A theory was developed to compare vibration modes obtained by NASTRAN analysis with those obtained experimentally. Because many more analytical modes can be obtained than experimental modes, the analytical set was treated as expansion functions for putting both sources in comparative form. The dimensional symmetry was developed for three general cases: nonsymmetric whole model compared with a nonsymmetric whole structural test, symmetric analytical portion compared with a symmetric experimental portion, and analytical symmetric portion with a whole experimental test. The theory was coded and a statistical correlation program was installed as a utility. The theory is established with small classical structures
Spontaneous structure formation in a network of chaotic units with variable connection strengths
As a model of temporally evolving networks, we consider a globally coupled
logistic map with variable connection weights. The model exhibits
self-organization of network structure, reflected by the collective behavior of
units. Structural order emerges even without any inter-unit synchronization of
dynamics. Within this structure, units spontaneously separate into two groups
whose distinguishing feature is that the first group possesses many
outwardly-directed connections to the second group, while the second group
possesses only few outwardly-directed connections to the first. The relevance
of the results to structure formation in neural networks is briefly discussed.Comment: 4 pages, 3 figures, REVTe
A methodology to allow avalanche forecasting on an information retrieval system
This paper presents adaptations and tests undertaken to allow an information retrieval (IR) system to forecast the likelihood of avalanches on a particular day. The forecasting process uses historical data of the weather and avalanche conditions for a large number of days. A method for adapting these data into a form usable by a text-based IR system is first described, followed by tests showing the resulting system’s accuracy to be equal to existing ‘custom built’ forecasting systems. From this, it is concluded that the adaptation methodology is effective at allowing such data to be used in a text-based IR system. A number of advantages in using an IR system for avalanche forecasting are also presented
Statistical correlation of structural mode shapes from test measurements and NASTRAN analytical values
The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data
Graphical explanation in an expert system for Space Station Freedom rack integration
The rationale and methodology used to incorporate graphics into explanations provided by an expert system for Space Station Freedom rack integration is examined. The rack integration task is typical of a class of constraint satisfaction problems for large programs where expertise from several areas is required. Graphically oriented approaches are used to explain the conclusions made by the system, the knowledge base content, and even at more abstract levels the control strategies employed by the system. The implemented architecture combines hypermedia and inference engine capabilities. The advantages of this architecture include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. The graphical techniques employed range from simple statis presentation of schematics to dynamic creation of a series of pictures presented motion picture style. User models control the type, amount, and order of information presented
Modelling land cover change in the Brazilian Amazon: temporal changes in drivers and calibration issues
Ecological equivalence: a realistic assumption for niche theory as a testable alternative to neutral theory
Hubbell's 2001 neutral theory unifies biodiversity and biogeography by modelling steady-state distributions of species richness and abundances across spatio-temporal scales. Accurate predictions have issued from its core premise that all species have identical vital rates. Yet no ecologist believes that species are identical in reality. Here I explain this paradox in terms of the ecological equivalence that species must achieve at their coexistence equilibrium, defined by zero net fitness for all regardless of intrinsic differences between them. I show that the distinction of realised from intrinsic vital rates is crucial to evaluating community resilience. An analysis of competitive interactions reveals how zero-sum patterns of abundance emerge for species with contrasting life-history traits as for identical species. I develop a stochastic model to simulate community assembly from a random drift of invasions sustaining the dynamics of recruitment following deaths and extinctions. Species are allocated identical intrinsic vital rates for neutral dynamics, or random intrinsic vital rates and competitive abilities for niche dynamics either on a continuous scale or between dominant-fugitive extremes. Resulting communities have steady-state distributions of the same type for more or less extremely differentiated species as for identical species. All produce negatively skewed log-normal distributions of species abundance, zero-sum relationships of total abundance to area, and Arrhenius relationships of species to area. Intrinsically identical species nevertheless support fewer total individuals, because their densities impact as strongly on each other as on themselves. Truly neutral communities have measurably lower abundance/area and higher species/abundance ratios. Neutral scenarios can be parameterized as null hypotheses for testing competitive release, which is a sure signal of niche dynamics. Ignoring the true strength of interactions between and within species risks a substantial misrepresentation of community resilience to habitat los
Egg development, hatching rhythm and moult patterns in Paralomos spinosissima (Decapoda: Anomura: Paguroidea: Lithodidae) from South Georgia waters (Southern Ocean)
Larval release, hatching rhythms and moult patterns were examined in a captive population of the subantarctic lithodid, Paralomis spinosissima from the South Georgia and Shag Rocks region. Larvae hatched throughout the year with the majority of females starting to release larvae at the end of the austral summer and beginning of autumn. Larval release continued over a period of up to 9 weeks with high variability in the numbers that hatched each day. A similar seasonal pattern to hatching was evident in the moulting of females. Intermoult period for two adult females (CL = 63 and 85 mm) ranged from 894 to 1,120 days while an intermoult period for males was estimated to be in excess of 832 days. The results are consistent with other species of Paralomis and are discussed in relation to physiological and environmental adaptations to the cold-water conditions south of the Antarctic Convergence
- …
