Statistical Correlation Analysis for Comparing Vibration Data From Test and Analysis

T. G. Butler, R. F. Strang,
L. R. Purves, and D. J. Hershfeld
Goddard Space Flight Center
Greenbelt, Maryland

TABLE OF CONTENTS

Page
INTRODUCTION 1
OBJECTIVE 2
METHOD 4
IMPLEMENTATION 8
Liaison 8
Analysis 9
Symmetry 10
CODES 18
DMAP ALTER's (STATDMAP) 18
PROCESS EIGENVECTORS (MERGE) 26
STATCORR 40
READING CORRELATION RESULTS 62
PROCESS EIGENVALUES (LAMA) 64
PROCESS EIGENVECTORS \& VECTOR GPS (UNPACKDMI) 72
PROCESS VECTOR OF GP's (GRDPTLST) 81
FUTURE REQUIREMENTS 84
USER MANUAL SUMMARY 86

STATISTICAL CORRELATION ANALYSIS FOR COMPARING VIBRATION DATA FROM
 TEST AND ANALYSIS

INTRODUCTION

Up until the last 30 years, structural analysis consisted largely of abbreviated and approximate calculations. Typically, the calculations represented empirical knowledge more than an understanding of structural behavior. Limited analytical capabilities also lead to limitations in testing. Without the knowledge of how a structure should respond to loads, the testing of a new design often consisted simply of putting it to its intended use. If it worked sufficiently well for a sufficiently long time, it was deemed successful and became a model for future structures of a similar nature.

This situation changed drastically as the result of three major developments. With the advent of the digital computer in the 1940s came the possibility of doing the large number of calculations required to determine accurately and in detail the stresses and deformations that a structure would experience when serving its intended functions. Next, the development of the finite element method in the 1950s provided algorithms, executable on digital computers, which could indeed calculate stresses and deformations in complex structures. Finally, software systems were developed to combine structural theory, finite element methods, and computer hardware into useful tools for structural analysis.

The NASTRAN software system (NASA STRuctural ANalysis), development of which was begun by NASA in 1965, is an example of such a system which has received wide usage. There were a number of reasons for its acceptance. First, it integrated into a unified set of software a sufficient number of algorithms and data types to carry out the majority of structural analyses. Second, NASTRAN included software to overcome many of the deficiencies of early computers, such as limited memory size, which would have otherwise limited the complexity of finite element models. This meant that the limitation on the complexity of an analyst's model shifted to the amount of computer time he could obtain. Finally, extensive effort went into providing good user interfaces, complete documentation, and wide dissemination. To enable wide use, NASTRAN is written mainly in a computer independent subset of FORTRAN, which permits it to run on 5 different makes of computers. The total capabilities provided by NASTRAN have contributed significantly to the present situation, where finite element analysis using digital computers is not only the dominant means of accomplishing structural analysis, but it is also widely used for analysis in heat transfer, aerodynamics, acoustics, control systems, potential theory, and actually any problem which can be solved by sets of linear equations.

The overall effect of this new tool has been to improve the quality of structural designs. With finite element techniques, the designer can be much more certain of reaching a desired tradeoff of structural efficiency, cost, and reliability than previously. However, the volumes of data produced by complex finite element analyses, now routinely performed, have created problems of interpretation, because of the human time required to assimilate large amounts of data. For the same reason, test data is often not completely compared to predicted analytical results. Often, if a structure goes through static and dynamic testing with no apparent problems, such as breakage or pronounced deflection or vibration, it is deemed adequate. When test data obviously disagrees
with results predicted by finite element analysis, a too frequent practice is to assume that the analytical data is wrong and to adjust its parameters until satisfactory agreement with test data is achieved.

There are a number of ways to increase the value of combined analytical and test data on structural behaviour. The work described here was undertaken to derive some of these improvements. Fundamentally, the two sets of data provide a means of cross checking, thereby reducing the probability of undetected errors in either set. A principal problem in doing cross checking is that there is not a commonly accepted measure of comparison between analytical and test data. Often, this means that a few hundred data points from both sources, regarded as critical, are plotted in some way, and if the data plots appear reasonably alike to the eye, or can be made to look alike by reasonable alterations to the analytical model, then agreement is decreed.

With the techniques described below, it is possible to use NASTRAN to place analytical results in a format in which they can be statistically compared as a group to equivalent groups of test data gathered by automated test systems. Statistical routines can then provide criteria describing overall agreement and identify areas of significant disagreement. This means that far more data can be evaluated with far less human labor. This technique can help identify whether disagreement is due to faulty test procedures or faulty modeling. However, another promising long range benefit of the statistical correlation of analytical and test data is that structural design can be further improved. There is presently no widely accepted and effective way of validating analytical results on real problems. Statistical comparisons with equivalent test data appear to provide an acceptable means for this validation. If this technique becomes widely used and improved, then it will gradually lead to improved analytical techniques, thus leading in turn to improved designs and eventually to improved structures.

OBJECTIVE

When designs need to qualify under narrow allowances, as is normally the case with aerospace structures, it is often necessary to compare structural vibration properties obtained from testing with those obtained from analysis.

In order for a comparison to be meaningful; it is necessary to define the basis on which the data will be compared. In general, they will be compared on the basis of like modes. A test mode and an analytical mode are alike if the amplitude of the standing wave pattern is "exactly" the same for both at all sample points. The bothersome qualifier in this definition of like modes is the word 'exactly'. Even if one were to assign a reasonable tolerance for defining the word 'exact', it would be rare to find a test mode that measured exactly the same as an analytical mode. A more realistic definition of modes being "alike" is to require that the pair correlate closely. This definition allows some engineering judgement for prescribing the tolerance of "closeness."

There are no exact solutions to the vibration characteristics of complex three dimensional structures. Highly capable analytical techniques are available, but they are liable to human error. Highly capable experimental equipment is also available, but human error can enter the experimental side from two sources: in fabricating the test article and in conducting the test. Once a like pair is found, it can be expected that the frequency at which this mode appears is different for analysis than it is for test. Therefore, the purpose of this enterprise is not to judge the correctness
of either set of data to represent a given design, but to point up differences and equip the responsible structural engineers with enough measures for them to be able to assess the areas of disagreement.

To illustrate how statistical comparison can help the structural engineer, consider the following example. After testing a collection of modes for likeness in a given frequency range, say 8 from test and 11 from analysis, it might be that 7 matches are found. Also, consider that one test mode and four analytical modes are not matched. In those that match, it is possible that the frequencies of the analytical modes are all higher than their test counterparts. It may also be that the one test mode without a match measures higher in frequency than all other test modes, while two of the analytical modes without matches measure lower in frequency than all other analytical modes, and the other two are in the middle range. Figure 1 depicts this example.

Figure 1
One would be inclined to look above the upper frequency bound of the analytical modes to find a match for the spinster test frequency, and to look below the lower frequency bound of the test modes to find matches for the mateless analytical modes. As for the two unpaired analytical modes in the middle frequency range, there is a possibility that analysis uncovered two modes that test failed to find. It might also be that one grid point stands out in five of the matching pairs of modes as the place where the modes show the greatest difference in their shapes. One might be suspicious of the analysis as having too low a value of mass at that point.

The happy ending to this story might be that the analytical mass defect was found, and the wanting test instrumentation was supplied so that the overall shift in frequency was erased, two middle range test modes were revealed, and 10 out of 11 matches were found in the frequency range on a second trial.

The limited amount of experimental data and the limited access in which to install sensors at interior points are factors that constrain the points at which comparisons can be made. There is a disproportionately large number of points at which analytical data is available for comparisons. The objective will be to bring about useful comparisons within the constraints of available data. The intent is to be able to identify the mode shapes from both of the sources; to say how closely any two mode shapes are related; to say at what frequencies the test mode and the analytical mode
of a closely related pair appear; to give the locations at which two modes diverge beyond a threshold; and to isolate the greatest divergence.

A correlary objective is to establish a communication basis between the records from analysis and the records from test. Once such a channel is established, then standardized data can be exchanged by means of a program. For instance, the arrays of generalized mass and generalized stiffness can be passed from analysis to test while the array of modal damping can be passed from test to analysis.

METHOD

Structural properties determined by either analysis or test can properly be regarded as nondeterministic and therefore random. For instance, in analysis the factors liable to random variation are: the interpretation of drawings, the modeling of elastic relations, the representation of joints, the modeling of mass properties, entering of data into the computer, transfer of data into, out of, and within a computer, computer behavior, and debugging methods. There will be as many analytical results as there are analysts. Similarly, variability in testing can arise from the quality of materials in fabrication, the machining of parts, the assembly of components, the mounting of sensors, the calibration of recorders, the reading of records, and the processing of data. The experimental results will be as individual as the number of teams conducting tests. Since it is the intention to compare two random records, a well proven stochastic tool to apply is the correlation function-or particularly-the correlation coefficient. Thus, the criterion for deciding whether two modes are the same can be mediated by how close to unity the correlation coefficient for them is. Statistical methods will be employed to compare test mode shapes with analytical mode shapes. Analytical and test measurements of mode shapes will be taken at the same set of structural locations, so that behavior will be compared at like points. At present, the comparisons in this study will be limited to undamped real modes, as opposed to damped complex modes. A test mode shape and an analytical mode shape will each be considered to be a statistical set of data. The number of test modes to be compared need not be the same as the number of analytical modes, so that all available modes from both sources within a specified frequency range can be considered. The primary tool for making comparisons will be the correlation coefficient.

According to James \& James 'Mathematical Dictionary', the definitions of the statistical quantities that will be used in this analysis are as follows:

$$
\begin{equation*}
\text { Variance }=\sum_{i=1}^{n}\left(\mathrm{X}_{\mathrm{i}}-\mathrm{x}^{\prime}\right)^{2} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=\sigma^{2} \tag{1}
\end{equation*}
$$

where n is the number of sample points in the statistical file,

$$
\begin{equation*}
x^{\prime} \text { is the mean }=\frac{1}{n} \sum_{i=1}^{n} x_{i} \tag{2}
\end{equation*}
$$

and $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)$ is the probability of finding the sample x_{i} in any statistical record. Other statistical quantities will be introduced after discussing those introduced thus far.

The following interpretations will be given to these quantities for purposes of this analysis. Data from each mode is a distinct statistical record. The quantity x_{i} is the measurement of the departure from the equilibrium position at a given point " i " of a single vibration mode from an eigenvalue analysis. If x_{i} were measured in time from an undamped oscillation, it is known from the definition of a mode shape that there will be an equal number of positive excursions as negative excursions away from the equilibrium position of a mode. The mean of a time varying sample would be the equilibrium position, so x^{\prime} would be zero. The x_{i} 's are not taken as time varying samples, but as the normalized envelopes of a finite number of extreme model positions for which the average is definitely not zero. The probability $p\left(x_{i}\right)$ is a quantity which varies from mode to mode. The function $p\left(x_{i}\right)$ for a mode is not known a priori, so it will be estimated by using the scheme of empirical probability density as described in Y. W. Lee's "Statistical Theory of Communications", page 125. The range of x_{i} depends on how a mode is normalized. For example, if a mode is normalized to its maximum component, the range is $-1<x_{i}<+1$. For normalization according to a particular component or to mass, the ranges can be greater or less than unity. The range is divided into equal increments, $\Delta \mathrm{x}$. Modal data is scanned for how many of the modal displacements fall within each increment; i.e, the number N_{i} in each increment Δx_{i}. The frequency ratio is constructed for each increment, by dividing the count in each increment N_{i} by the total number of modal data points $n: \mathrm{N}_{\mathrm{i}} / \mathrm{n}$. According to Jacob Bernoulli's theorem on probability, the quantity $\frac{N_{i} / n}{\Delta x}$ stays within an ϵ neighborhood of $p\left(x_{i}\right)$ as n gets large and Δx grows small. It will be assumed that the number of samples of a mode shape n is sufficiently large to justify the use of the quantity $\frac{N_{i} / n}{\Delta x}$ as a reasonable approximation to the probability density function $p(x)$ for use in this algorithm. The probability that a model sample point " h " will fall within the range of

$$
x<h<x+\Delta x \text { is } \quad \int_{x}^{x+\Delta x} p(x) d x
$$

Because of the discretized nature of the available data the integral will be approximated in incremental form by

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}<\mathrm{h}<\mathrm{x}_{\mathrm{i}}+\Delta \mathrm{x}\right) \approx \frac{\mathrm{N}_{\mathrm{i}} / \mathrm{n}}{\Delta \mathrm{x}}\left(\mathrm{x}_{\mathrm{i}}+\Delta \mathrm{x}-\mathrm{x}_{\mathrm{i}}\right) \approx \mathrm{N}_{\mathrm{i}} / \mathrm{n} \tag{3}
\end{equation*}
$$

On occasion, a fault in a sensor or a recorder will arise which voids data for some point. This renders the probability null for finding data at that point. Instead of admitting a zero probability, this analysis will reduce the sample space " n " to the corresponding number of data points available in both analysis and test.

With the above provisions for this analysis, the statistical quantities reduce to:
Variance

$$
\begin{equation*}
\sigma^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}\right)^{2} \mathrm{~N}_{\mathrm{i}} / \mathrm{n} \tag{4}
\end{equation*}
$$

Standard Deviation

$$
\begin{equation*}
\sigma=+\sqrt{\sigma^{2}}=+\left[\sum_{i=1}^{n}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}^{\prime}\right)^{2} \mathrm{~N}_{\mathrm{i}} / \mathrm{n}\right]^{1 / 2} \tag{5}
\end{equation*}
$$

R.M.S (Root Mean Square)

$$
\rho=\left[1 / \mathrm{n} \sum \mathrm{x}_{\mathrm{i}}^{2} \quad \mathrm{~N}_{\mathrm{i}} / \mathrm{n}\right]^{1 / 2} . \text { If } \mathrm{x}^{\prime}=0 \text { then } \rho=\sigma
$$

Correlation Coefficient between two statisitical files $\mathrm{x}_{\mathrm{i}}(\mathrm{a})$ and $\mathrm{x}_{\mathrm{i}}(\mathrm{e})$ is:

$$
r_{a b}=\frac{\left.\sum_{i=1}^{n}\left[x_{i}(a)-x^{\prime}{ }_{a}\right] \rho_{a}\left(x_{i}\right)\right]\left[x_{i}(e)-x_{e}^{\prime}\right] \rho_{e}\left(x_{i}\right) \cdot \rho_{a e}\left(x_{a}, x_{e}\right)_{i}}{\sqrt{\sum_{i=1}^{n}\left[x_{i}(a)-x_{a}^{\prime}\right]^{2} \rho_{a}\left(x_{i}\right) \sum_{i=1}^{n}\left[x_{i}(e)-x_{e}\right]^{2} \rho_{e}\left(x_{i}\right)}}
$$

using $x_{a}^{\prime}=x^{\prime}{ }^{2}=0$, and using the frequency ratios for approximating probability causes " r " to simplify to:

$$
\begin{align*}
& r_{a b}=\frac{\sum_{i=1}^{n} x_{i}(a) x_{i}(e) \frac{N_{a}\left(x_{i}\right)}{n} \frac{N_{e}\left(x_{i}\right)}{n}}{\sqrt{\sum_{i=1}^{n} x_{i}(a)^{2} \frac{N_{a}(x)}{n}} \sum_{i=1}^{n} x_{i}(e)^{2} \frac{N_{e}(x)}{n}}=\frac{\sum_{i=1}^{n} x_{i}(a) x_{i}(e) \frac{1}{n^{2}} N_{a}\left(x_{i}\right) N_{e}\left(x_{i}\right)}{\sigma_{a} \sigma_{e}} \\
& \quad r_{a b}=\sum_{i=1}^{n} \frac{x_{i}(a)}{\sigma_{a}} \frac{x_{i}(e)}{\sigma_{e}} \frac{N_{a}\left(x_{i}\right) N_{e}\left(x_{i}\right)}{n^{2}} \tag{6}
\end{align*}
$$

Equation (6) can be interpreted as the total effect over the whole mode of multiplying the modal amplitude in the "a" set of data when scaled by its standard deviation, by the modal amplitude in the " e " set of data when scaled by the " e " standard deviation, for every pair of corresponding points, and summed for all n points. This method gives complete freedom to both the analyst and to the experimenter for organizing data in the manner of his choice (so long as it is uniform) and of normalizing to any convenient scheme independent of each other. When each set of data is scaled to its own standard deviation, both are placed on equal footings regardless of how the modal data was originally obtained.

All modes in both sets will be compared with each other, and the correlation coefficient will be computed for every combination.

Relative Deviation

It is instructive to determine where and by how much test and analytical mode shapes differ from one another. The approach here is to scale the modes so as to be highly sensitive to differences. Scaling by the RMS value for each mode will put both modes on such a footing that their differences will show a greater spread than they would if scaled by the variance. Using subscript " a " to indicate quantities belonging to analytical data and " e " to indicate quantities belonging to experimental data, the expression for relative deviation in the $\mathrm{i}^{\text {th }}$ sample of the $\mathrm{j}^{\text {th }}$ mode is written as:

$$
\begin{equation*}
(\text { Rel. Dev. })_{\mathrm{ij}}=\left|\frac{\mathrm{x}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{j}}\right.}{\rho^{\mathrm{a}}}-\frac{\mathrm{x}_{\mathrm{i}}(\mathrm{e})_{\mathrm{j}}}{\rho^{\mathrm{e}}}\right| \tag{7}
\end{equation*}
$$

Relative deviation in a mode is the absolute value of the difference between the analytical modal displacement scaled by its modal RMS, and the experimental modal displacement scaled by its own modal RMS. An option will be given to specify what percentage of spread is to be displayed with the grid point identity. The default value of this spread is 5%.

Three other quantities will be computed which have been found to be useful by practicing test engineers. These quantities are defined in an internal GSFC memorandum written by D. J. Hershfeld dated January 8, 1971, entitled "Fitting Mode Shapes to Experimental Data." According to equation (2) of the memo (when transcribed into notation adapted in this report) the normalizing factor of the $\mathrm{j}^{\text {th }}$ mode is:

Normalizing Factor

$$
\begin{equation*}
C_{j}=\frac{\sum_{i=1}^{n} x_{i}(a)_{j} x_{i}(e)_{j}}{\sum_{i=1}^{n} x_{i}(a)_{j}^{2}} \tag{8}
\end{equation*}
$$

The standard error, according to equation (5) of the memo in transcribed notation, is:

Standard Error

$$
\begin{equation*}
S=\left|\frac{1}{n}\left[\sum_{i=1}^{n} x_{i}(e)^{2} N_{e}\left(x_{i}\right)-\underset{i=1}{n} x_{i}(a)^{2} N_{a}\left(x_{x}\right)\right]\right|^{1 / 2}=\left|\sigma_{e}^{2}-\sigma_{a}^{2}\right|^{1 / 2} \tag{9}
\end{equation*}
$$

Differences in mode shapes are computed by a common scaling of their absolute values by the standard error:

$$
\begin{equation*}
\underline{\text { Scaled Difference }}=\left|\left[x_{i}(\mathrm{a})-\mathrm{x}_{\mathrm{i}}(\mathrm{e})\right] / \mathrm{S}\right| \tag{10}
\end{equation*}
$$

The tabulations of input modal arrays will be processed by this program. Listings will be made of modal masses, modal stiffnesses, and modal damping arrays versus frequency.

IMPLEMENTATION

In order to put this statistical correlation method of comparing test and analysis into operation, attention must be given to three distinct operations: a. the generation of the analytical vibration data and the transfer of its results, b. the sensing of the test vibration data and the transfer of its results, and c. the computation of the comparison between test and analysis and the acceptance of data from the two sources.

Analytical vibration data are expected to be implemented with NASTRAN. Output of the results is needed in non-standard form, so an ALTER packet was written to tailor the data and to translate the data to BCD for universal readability. These analytical data need further processing before computation can start and are passed to intermediate processors.

Two assemblies of test data are expected. They are: the list of points where test data were taken and the tabulation of mode shapes and frequencies in simple BCD format. They need to be transferred to files in the primary computer for computation.

The computation according to the theory outlined above is accomplished in a program called STATCORR. It expects input data in particular formats and allows the user to choose from a variety of output options.

Consideration has been given to analytical and test data coming from various sources. The STATCORR program will operate on data independent of its source, so long as it is entered according to a specified format. During this development, the analysis was done with NASTRAN and the tests were performed by the Environmental Test \& Integration Branch at GSFC. References to specific analytical operations will pertain to capabilities in NASTRAN.

Provision was made for data coming from several runs, structures with symmetry, different normalizations, and non-uniform samples.

Liaison

At the outset, it is mandatory that comparisons be based on data gathered from identical locations. Liaison between test and analysis personnel prior to either the generation of the NASTRAN model or the instrumentation of the test article must establish the points and the component directions āt which data is to be sampled. This set of locations will be referred to as the TESET vector. TESET will govern the location and orientation of test sensors and will govern the entries in the analytical partitioning vector. It is used in tabulating mode shapes from test and analysis, and it is the primary reference within STATCORR for sorting and reporting differences.

Equally important as matching data points is matching boundary conditions. The most difficult experimental boundary to enforce is clamped. The easiest to enact is free-free. Liaison between the test engineer and the analyst will help to uncover any disparity between the test set-up and the analytical boundary constraints.

Provision has been made for using symmetry. If the structure has symmetry that can be taken advantage of, liaison should define whether both test and analysis will collect data on only the basic segment. If so, agreement is needed on the naming of each plane of symmetry. Then, each test mode and each analytical mode must be tagged with SYM \# PLAN parameters for the type of symmetry across each plane of symmetry. If only analytical data is based on symmetry, while test data is gathered over the whole structure, liaison is needed for three additional items. Octants of symmetry need to be identified. Each test point must be checked for the existence of an image point of reflection in the basic segment of analysis. Multiply-reflected image points must be provided with clones. A list of points with their individual component numbers belonging to each octant is organized by analysis, but should be double checked by the test engineer before proceeding.

Analysis

In NASTRAN, there are 5 options for eigenvalue analysis: Determinant, Inverse Power, Givens, Feer, and Hessenberg. All methods are manageable for use in conjunction with STATCORR. There is a problem, however, in transferring NASTRAN eigenvalue results into STATCORR. A DMAP ALTER has been written that manages this transfer. Modal frequencies, mass, and stiffness are delivered as part of the LAMA table in DTI format, using TABPCH. Partitioned mode shapes are delivered as a single matrix in DMI format using OUTPUT3. An explanation of the ALTER packet will follow subsequently. There are some precautions that should be observed with some of the 5 methods. With the Feer method one should check-point the eigenvalue run and exit after the READ module. Results should be examined for the acceptability of the last half of the roots extracted. If negative roots or vectors that fail to meet the orthogonality criterion are found, the PHIA matrix and LAMA table should be partitioned down to only the valid roots immediately after restarting; then one can proceed with the prepared DMAP ALTER route. Sometimes with the Determinant and the Inverse Power methods, several runs may be required before all the roots in a given frequency range are found. Data from any number of separate runs may be combined, but some roots may be repeated in different runs. A post-processor program (MERGE) has been provided to combine eigenvector data from the several runs, detect and eliminate duplicates, and sequence them in ascending order of frequencies. Modes may be normalized according to MASS, MAX, or POINT, but once a decision is made for a method of normalizing, it must be used exclusively for all analytical modes henceforth.

Partitioning is done using the DMAP module PARTN which requires a user supplied partitioning vector. The vector has been arbitrarily named TESET (standing for test set), but this name is imbedded in the DMAP statements of the ALTER packet, so it becomes necessary to use this name. DMI bulk data cards define the vector as a rectangular matrix of a single column, and the number of rows equal to order G of the structural model. This partitioning vector will be designed to serve a double duty. In addition to its duty of partitioning the PHIG matrix, TESET will serve the STATCORR program as a guide for correlating the sequence of test data with analytical data. The device employed to enable this secondary duty is that of constructing the DMI vector in ordered pairs. The first member of this pair is a NASTRAN internal sequence number which corresponds to a component of a test point. The second member of the pair is the Grid Point ID number belonging to the test point. The internal sequence number is actually the row
number of the equation of equilibrium for a given degree of freedom as they are organized in NASTRAN's system of matrices. The matrix of eigenvectors, PHIG, is the matrix to be partitioned, so the vector used to do the partitioning has to be the same order as the subject matrix. The final letter of standard NASTRAN matrix names gives its size; so in this case, the partitioning vector must be of order G; or briefly, the vector is G-sized. The format of the DMI input data requires that the first member of the pair is to be an integer, and second member of the pair is to be a real number. Consequently, in implementing this DMAP ALTER the user is required to first list the grid point identification number (ID) as a real number. Just placing a decimal point after the ID number makes it a real number. The internal sequencing used by NASTRAN for matrix operations could be different than that which the analyst originated with his grid point sequencing. The partitioning vector must be organized according to internal sequencing, so it is advisable to include DIAG 21 and 22 and CHKPNT YES in the executive control packet, and then insert an ALTER to EXIT somewhere after the GP4 module. The detailed correspondence between internal and external sequencing for the various sets will be printed when DIAG 21 and 22 are activated. The internal sequence number of every corresponding entry on the DOF list will become the row number of the partitioning vector. The row numbers are required to appear in ascending sequence on the DMI cards.

Symmetry

As a special analytical case, an analyst likes to take advantage of symmetry of a particular structure for the economy and improved definition of modes. Cyclic symmetry is automated within NASTRAN, but reflective symmetry is not. Mode shapes analyzed via cyclic symmetry can automatically be described either for the whole structure, or for just a segment. The only additional processing needed for such modes, before they would be ready for STATCORR, is partitioning. On the other hand, modes analyzed via reflective symmetry require additional processing in order to prepare the modes for STATCORR. Eigenvalue analyses employing reflective symmetry may cause the analytical data to be delivered in the form of several runs, depending on the available combinations of symmetry and anti-symmetry. The post processor program for analytical data, mentioned above in the discussion of DET and INV methods, will operate, as explained before, by combining all modes, eliminating duplicates, and sequencing both frequency and GP list. In addition, the analyst will supply 3 parameters that will act like flags to the STATCORR program for indicating the symmetry status with respect to each of the bounding planes of symmetry. Each of the three parameters can carry the values $-1,0$, or +1 for the symmetry status. " 0 " denotes "absence of symmetry" such as for the face plane of a plate. Positive 1 denotes symmetric behavior about the plane of symmetry. Negative 1 denotes anti-symmetric behavior about the plane of symmetry. Names given to these three parameters are SYM1PLAN, SYM2PLAN, and SYM3PLAN. Values for these symmetry parameters must always be supplied, if modal data is based upon information gathered on the basis of only a basic segment of a structure. If data from both test and analysis are flagged for OK having symmetry, STATCORR tests for the existence of symmetry for one file and anti-symmetry for the other file occurring simultaneously with respect to any one of the three planes. When such an unlikeness occurs, the algorithm immediately declares the correlation coefficient to have the value zero, and suspends calculations for both variance and RMS. Likeness amongst all three parameters between the two sets simultaneously indi-
cates to STATCORR that only the correlation coefficient for the basic segment need be calculated, because it is equal to that for the complete structure. RMS is also the same for the whole structure as it is for the basic segment. However, variance of the whole structure is equal to the number of octants of symmetry multiplied by the variance of the basic segment. Standard deviation of the whole structure is equal to the square root of the number of octants of symmetry multiplied by the standard deviation of the basic segment.

To illustrate how the correlation coefficient has values alternating between zero and that for the basic segment, a pair of free parallelepipeds with 3 planes of symmetry will be used. Modes

involving translations in only one coordinate will provide enough detail to be realistic without obscuring the concepts with complications.

Symmetry parameters SYM1PLAN, SYM2PLAN, and SYM3PLAN for the two solids being compared have the values $+1,-1,+1$ for solid A and $+1,+1,+1$ for B. A set of modes conforming to these parameters is diagrammed to create a mental image.

The correlation coefficient between the two structures is

$$
r=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\left[\sum_{i=1}^{n} x_{i}^{2}\right]^{1 / 2}\left[\sum_{i=1}^{n} y_{i}^{2}\right]^{1 / 2}}=\frac{(x y)_{1}+(x y)_{2}+(x y)_{3}+(x y)_{4} \ldots \ldots \ldots \ldots(x y)_{8}}{\left[x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\ldots x_{8}^{2}\right]^{1 / 2}\left[y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+\ldots y_{8}^{2}\right]^{1 / 2}}
$$

where $\sum_{i=1}^{n_{S}} x_{i} y_{i}=(X Y)_{S}, \quad \sum_{i=1}^{n_{S}} x_{i}{ }^{2}=X_{S}$, and $\sum_{i=1}^{n_{S}} y_{i}{ }^{2}=Y_{s}$.
Substitute the equivalent, signed basic segment portion for octants 2 and above.

$$
\begin{aligned}
r & =\frac{(x y)_{1}+(x y)_{1}+[(-x) y]_{1}+[(-x) y]_{1}+(x y)_{1}+(x y)_{1}+[(-x) y]_{1}+[(-x) y]_{1}}{\left[8 x_{1}\right]^{1 / 2}\left[8 y_{1}\right]^{1 / 2}} \\
& =\frac{0}{8 \sigma_{\mathrm{x}} \sigma_{y}}=0 .
\end{aligned}
$$

If, however, both A and B were symmetric with respect to all 3 planes of symmetry, the correlation coefficient can be represented in terms of basic segment data as follows:

$$
\mathrm{r}=\frac{8(\mathrm{xy})_{1}}{8^{1 / 2} \sigma_{\mathrm{x}} 8^{1 / 2} \sigma_{\mathrm{y}}}=\frac{8(\mathrm{xy})_{1}}{8 \sigma_{\mathrm{x}} \sigma_{\mathrm{y}}}=\frac{(\mathrm{xy})_{1}}{\sigma_{\mathrm{x}} \sigma_{\mathrm{y}}} \quad \text { q.e.d. }
$$

This concept is built into the correlation algorithm of STATCORR. A table of correlation coefficients for various symmetry permutations clearly shows the oscillation between two values.

Variance. The variance is given by

$$
\sigma^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{2}
$$

$$
\sigma^{2}=\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}+\mathrm{X}_{5}+\mathrm{X}_{6}+\mathrm{X}_{7}+\mathrm{X}_{8}
$$

which, in terms of equivalent basic segment for the parallepiped, becomes:

$$
\begin{equation*}
\sigma^{2}=8 \mathrm{X}_{1}=8 \sigma_{1}^{2} \text {, or } \sigma_{\text {whole }}^{2}=2^{\mathrm{p}} \sigma_{\text {basic }}^{2} \tag{12}
\end{equation*}
$$

where $\mathrm{p}=$ the number of planes of reflective symmetry.

Standard Deviation. Similarly,

$$
\sigma=\left(\sigma^{2}\right)^{1 / 2}=\left(8 \sigma_{1}^{2}\right)^{1 / 2}=2 \sqrt{2} \sigma_{1} \text { or } \sigma_{\text {whole }}=2^{\mathrm{p} / 2} \sigma_{\text {basic }}
$$

Root Mean Square
$\rho=\sigma / \sqrt{\mathrm{n}}$, where m equals the sample points in the basic segment and $\mathrm{n}=8 \mathrm{~m}$.
$\rho_{\text {basic }}=\sigma_{\text {basic }} / \sqrt{\mathrm{m}}$, but $\sigma_{\text {whole }}=2 \sqrt{2} \sigma_{\text {basic }}$

$$
\begin{align*}
& \rho_{\text {whole }}=2 \sqrt{2} \sigma_{\text {basic }} / \sqrt{8 \mathrm{~m}}=\sigma_{\text {basic }} / \sqrt{\mathrm{m}}=\rho_{\text {basic }} \tag{13}\\
& \rho_{\text {whole }}=\rho_{\text {basic }}
\end{align*}
$$

Normalization Factor

$$
\mathrm{C}=\frac{\text { Same numerator as " } \mathrm{r} \text { " }}{\sigma_{\mathrm{a}}^{2}}
$$

Using the results leading up to equation (11), one can conclude that when there is unlikeness in the symmetry parameters, the numerator is zero, causing C to be null. When there is likeness amongst all of the symmetry parameters,

$$
\begin{align*}
& \mathrm{C}=\frac{8(\mathrm{XY})_{1}}{8 \mathrm{X}_{1}}=\frac{(\mathrm{XY})_{1}}{\mathrm{X}_{1}} \tag{14}\\
& \mathrm{C}_{\text {whole }}=\mathrm{C}_{\text {basic }}
\end{align*}
$$

Standard Error

$$
\mathrm{S}=\left[\frac{1}{\mathrm{n}}\left(\sigma_{\mathrm{e}}{ }^{2}-\sigma_{\mathrm{a}}^{2}\right)\right]^{1 / 2}
$$

then

$$
\begin{align*}
& \sigma_{\mathrm{e}}^{2}=8 \mathrm{X}_{1}(\mathrm{e}) \text { and } \sigma_{\mathrm{a}}{ }^{2}=8 \mathrm{X}_{1}(\mathrm{a}) . \text { Make these substitutions. } \\
& \mathrm{S}=\left[\frac{8}{8 \mathrm{~m}}\left(\mathrm{X}_{1}(\mathrm{e})-\mathrm{X}_{1}(\mathrm{a})\right]^{1 / 2}=\left[\frac{1}{\mathrm{~m}}\left(\sigma_{\mathrm{e}}-\sigma_{\mathrm{a}}\right)_{\text {basic }}\right]^{1 / 2}\right. \\
& \mathrm{S}_{\text {whole }}=\mathrm{S}_{\text {basic }} \tag{15}
\end{align*}
$$

The final alternate of reflective symmetry is the case in which analytical properties are determined by only modeling a basic segment, while test uses the entire structure. The scheme will be to limit the calculations to only those quantities that are necessary. It was discovered during the development of this method that it was not necessary to deploy the basic segment geometry into a mode shape over all 8 octants. By planning ahead, it is possible to arrange that every instrumented point on the test article, when reflected back to the basic segment, will define an image point in the basic segment which is a member of the grid of points used in the analysis. It is possible that several external test points reflect back to a common image point in the basic segment, but in the operation of the processor program, it is necessary to provide a unique point in the basic segment for every instrumented point. A multiply-reflected point violates this requirement. This dilemma is solved by setting up clones of grid points in the NASTRAN bulk data. Thus, the total set of points used by analysis in the basic segment must embrace all of the instrumented points. Those will be of three kinds: direct, image, and cloned points. The direct points correspond to the instrumented points in the basic segment on the test article The image points are those having no corresponding points in the basic segment, and that, when reflected by an appropriate number of times from the basic segment, thus will coincide in ID and location with a unique instrumented point outside of the basic segment on the test article. A cloned point is a grid point in the basic segment with a unique grid point ID number, which has duplicate coordinates of a multiplyreflected direct or image point, but has no structural function. There are as many clones at a point as there are multiplicities of instrumented reflections to a point. Clones are fully constrained points that have no elements connected to them. The point whose coordinates are being cloned is called a parent point. It is usual for the analysis to have more data points than the test data has, so it is necessary to partition the analytical mode shapes down to contain data corresponding to only those points that were instrumented on the test article. Partitioning vector TESET earmarks all direct, image, and cloned points so that when TESET acts on the matrix of analytical mode shapes, PHIG, the modal deflections for instrumented points only will be retained in the matrix PHITE. But PHITE, at this raw stage, is not ready for comparison with test data, because modal data from the basic segment has to be reflected out to the instrumented points with correct signs. The signs of the deflections of instrumented points to be assigned to image and cloned points, depend on their location and the type of symmetry being simulated by an analytical run. A way has been devised to communicate these particulars to the processor program which will enable it to convert PHITE to make it ready for STATCORR. The same parameters that described the type of symmetry for the case of both sources using symmetry will serve equally well for this case. Parameters SYM1PLAN, SYM2PLAN and SYM3PLAN must be supplied so that they will be output to the postprocessor. In order to so communicate a location, a convention must be adapted. The following is the convention used for identifying the octants. Octant \#1 is the basic segment. Octant \# 2 is the reflection of the basic segment about the first plane of sym-
metry. By-pass, momentarily, the definition of octant \# 3 and define octant \# 4 as the reflection of the basic segment about the second plane of symmetry. Octant \# 3 lies in between octants 2 and 4. It is a double reflection of the basic segment about the first and second planes of symmetry. Octant \#5 is the reflection of the basic segment about the third plane of symmetry. Rather than define octants 6,7 , and 8 as a series of precise double and triple reflections, it is easier to picture them as lying under octants 2,3 , and 4 , just as octant $\# 5$ lies under the basic octant. It remains to set a procedure for reporting the locations of instrumented points. This is done by reorganizing the data, already contained in the TESET vector, into an 8 columned matrix which will be named DOFLIST. Columns one through eight of DOFLIST refer to octant locations one through eight. Direct points are tabulated in ascending sequence of internal DOF number in column one. Image points and parents of cloned points reflected from octant \# 2 are tabulated in ascending sequence of internal DOF number in column two. Similarly, tabulations follow for octants 3 through 8. Tabulations are omitted for any octant for which symmetry is absent (i.e., SYM \#PLAN is zero). The essential difference between TESET and DOFLIST will be stressed at this juncture. TESET is a vector tabulation of internal degrees of freedom vs. instrumented grid point numbers including clone IDs. DOFLIST is an 8 columned matrix tabulation of internal degrees of freedom vs. all instrumented grid point numbers except that parent IDs are used for clones.

By definition, if SYM2PLAN is equal to -1 , the reflection with respect to the second plane is anti-symmetric, and the vertical displacements in octant \# 4, as shown in Figure 2, are of the opposite sign from those in the basic segment. Similarly, if SYM3PLAN is equal to +1 , the vertical displacements in octant 5 would also be of opposite sign from those of the basic segment. To determine the sign for octants $\# 3,6,7$, and 8 , the parameters must be used in particular ways. Thus, the sign of displacements in octant \# 3 depend on the types of symmetry across both the first and second planes of symmetry. If one were symmetric and the other anti-symmetric, the vertical displacements for octant \# 3 would be of opposite sign to the basic. This discussion deals with a given point in the basic segment which is paired with its image point in the reflected octant; therefore all such pairs of displacements are equal in magnitude. Symmetry and anti-symmetry for 3 translational and 3 rotational degrees of freedom will be defined with respect to a plane of symmetry, and then is translated to items of action pertaining to the correlation coefficient under the option of "symmetry for analysis and whole structure for test." Consider, for discussion purposes, that the plane of symmetry is a coordinate plane and, it is oriented vertically. Designate one of the other two coordinate planes to be the horizontal plane, and the remaining one to be transverse.

For the moment, language will be adapted for describing the modal displacements in terms of this convention for the 3 planes. Displacements perpendicular to the plane of symmetry can be described as being towards or away from the plane of symmetry. Displacements perpendicular to the horizontal plane can be described as being up or down. Displacements perpendicular to the transverse plane can be described as back and forth. The goal is to define the behavior of the reflection with respect to the plane of symmetry for each of the 6 displacement components at a Grid Point, for either the symmetric or the anti-symmetric case.

When data is collected on a whole structure with respect to a single fixed coordinate system with coordinate planes imbedded in the frame of the planes of symmetry, it is unaware of the descriptions: twd/away, up/down, back/forth. Therefore, when analytical symmetric data is converted from the basic segment to modal behavior in the seven other octants, it must take into account
the way that displacements will appear in the fixed coordinate system of the whole. As an example, according to Table S, the symmetric behavior involving displacements perpendicular to the plane of symmetry will result in the basic and image points both moving synchronously toward or synchronously away from the plane of symmetry. In terms of the coordinate system of the whole, the displacements involve the same coordinate axis. Since they are both moving toward the plane of symmetry, they are moving towards each other; that is, they bear opposite signs.

Table S

IMAGE VS BASIC MOTIONS WITH RESPECT TO PLANES OF SYMMETRY

DIRECTION OF MOTION

RELATIONSHIPS

TRANS $\perp \mathrm{P} / \mathrm{S}$	Both twd Both away One twd \& one away - AntiSym$>-$ Symmetric
ROT'N $\perp \mathrm{P} / \mathrm{S}$	Δ vert $/ \Delta$ forth:Both Δ up or Both Δ down with Both Δ forth
One Δ up \& one Δ down	
with Both Δ forth	

TRANS $\perp \mathrm{H} / \mathrm{P} \quad$| Both up |
| :--- |
| Both down |
| One up \& one down - AntiSym |$>-$ Symmetric

ROT'N $\perp \mathrm{H} / \mathrm{P} \quad \Delta$ across $/ \Delta$ forth:
$\begin{aligned} & \text { Both } \Delta \text { twd } \\ & \text { Both } \Delta \text { away }\end{aligned}>-$ Symmetric with Both Δ forth $\begin{aligned} & \text { One } \Delta \text { twd \& one } \Delta \text { away } \\ & \text { with Both } \Delta \text { forth }\end{aligned}>-$ AntiSym

TRANS \perp T/P $\quad \begin{aligned} & \text { Both forth } \\ & \text { Both back }\end{aligned}>-$ Symmetric
One forth \& one back - AntiSym
ROT'N \perp T/P $\quad \Delta$ across $/ \Delta$ up: Both Δ twd or Both Δ away with Both $\Delta u p$

- Symmetric One Δ twd \& one Δ away $>$ - AntiSym with Both $\Delta u p$
- Symmetric
$>-$ AntiSym

Consequently, adaptation of basic segment data to octant \# 2 symmetrical modal behavior, requires that the sign be changed for those components which are perpendicular to the plane of symmetry. Currently, it is recognized that only translational data is measured in test, but Table U will
be prepared for sign changes not only for the 3 translational components, but also for the three rotational components. In order to implement this conversion, certain restrictions must be placed on the analytical model. Only the basic coordinate system will be allowed to be used for grid points in the basic segment which correspond to instrumented test points. Its coordinate planes must be parallel to planes of reflective symmetry. To report how the basic coordinate system is oriented to the planes of symmetry, a vector is required to be constructed on DMI cards called IDCORD. The basic coordinate system ID (non-zero) is entered as an integer in the row position, and the translational component which is perpendicular to the $1 s t$ plane of symmetry is entered as a real number, followed by the translational component, which is perpendicular to the $2 n d$ plane of symmetry. The size of the matrix to be entered on the " 0 " card is: rows = ID $\#+1$, columns $=1$. If a small number is used for the coordinate system ID, it will eliminate the unnecessary processing of zeroes. The card will have the appearance of that shown in Figure 3, page 18.

Table U
ACTION TABLE FOR CONVERTING BASIC SEGMENT DATA SIGN OF DISPLACEMENT

Notice that the octants are not entered in ascending sequence. The scheme used here was to work towards increasing complexity starting with octants involving only a single reflection, then double, and finally triple reflection.

DMI	IDCORD	0	2	1	1	ID + 1	1
DMI	IDCORD	1	ID	PERP 1ST	PERP 2ND		
			(INTEGER)	(REAL)	(REAL)		

Figure 3

What action needs to be taken to convert a component in the basic segment to a modal displacement for an image point in an external octant has been worked out for either type of symmetry, for all six component displacements, and for the three distinct orientations of the basic coordinate system. The action to be taken is, either to change the sign of that component or not. If the sign is to be changed, the notation in the table is CHNG. If the sign is to be left unchanged, the entry in the table is expressed in computer jargon as NOOP, meaning no operation.

Certain components can participate in only certain types of multiple reflections. Null entries are mutually exclusive. The processor program will accomplish the actions tabulated here, so that the analytical mode shapes delivered to the STATCORR program will represent whole structure behavior at those image points corresponding to instrumented points outside the basic segment.

CODES

DMAP ALTER's; (STATDMAP)

In reviewing the design of the DMAP ALTER packet, one sees that its principal function is to transfer important data blocks from the NASTRAN runs to the STATCORR program. It uses the punch file for all output. It manages the partitioning of the eigenvectors to the order of test modes.

A DMAP ALTER packet must be included with each analytical run in order to provide the data sets and parameters necessary to prepare the output properly for operating the STATCORR program. A listing of the ALTER packet is contained in this report on pages 22 through 26. As of this writing, the packet is compatible with NASTRAN Rigid Format Series P. It was intended to be self explanatory by supplementing it with comment statements. It is stored in the user library account ULIBI in the Design Engineering Branch under the filename DRA0:[NASCAT.UTILITY] STATDMAP.LIS;1. Analysts who wish to implement this ALTER can access this file, then copy and merge it into the executive control of their own jobs. Scanning the left hand margins of STATDMAP, the reader will notice that there are several subdivisions. Each subdivision will be called a packet according to an identifier. Each ALTER packet subdividion is readily distinguished by a title. The first packet is entitled FREQUENCY DATA and uses the margin identifier $\$$. PARTITIONED MODE SHAPES is the title of the second packet, identified by \$P. The third packet is entitled SYMMETRY FOR BOTH, using $\$ 5$ at the margin. Finally, the ANALYTICAL

SYMMETRY ONLY packet uses identifier $\$ W$. Packets F and P are always used. When data comes from a basic segment of symmetry for both analysis and test, packets F, P, and S are used. The entire set of ALTER packets is needed when the test data is based on the whole structure, but analysis uses a basic segment only. Packet $\$ F$ delivers the LAMA table from a NASTRAN eigenvalue execution to the punched output file using the DMAP utility module, TABPCH. Although the entire LAMA table is exported, the preprocessor program selects only three entries for each mode. These are words 5, 6, and 7 in Record 2 of LAMA giving the cyclic frequency, generalized mass, and generalized stiffness, respectively. Packet $\$$ P instructs the user how to set up his DMI cards for defining the partitioning vector TESET. Module PARTN employs TESET to partition the matrix of eigenvalues PHIG from the analytical size down to experimental size. Module OUTPUT 3 delivers test-sized eigenvectors PHITE and vector TESET to the punch output file in DMI format.

Packet $\$ S$ provides a place for the analyst to catalog which of the planes of symmetry he named first, second, and third. There are options for rectangular, cylindrical or spherical coordinate systems, so the user is advised to erase the unused options to avoid the clutter. The primary purpose of packet $\$ S$ is to define the type of reflective symmetry which was simulated for a given computer run. Each time a run is made with a different set of boundary conditions at the planes of symmetry, the appropriate entries should be made for the SYM \# PLAN parameters. These parameters are not used at all in the NASTRAN execution. DMAP is being used as a transfer agent to pass the values of these parameters into the post-processor program in a self-contained package so that none of the pertinent data goes adrift or gets mixed with the wrong set. Module PARAM is set up for the user to input their values, and module PRTPARM transfers them to the output file. All other previous output has been sent to the punch output file, and these parameters should be no exception. This is done by intercepting the print output from PRTPARM just long enough to route it to the FORTRAN logical unit for punch output, and then restoring it. PARAM statement S4 directs the parameters to the punch output, and S7 restores it to print output.

Packet $\$ W$ instructs the user how to set up his DMI cards for tabulating the image points in the octants for matrix DOFLIST and for the IDCORD card. Module OUTPUT3 delivers the DOFLIST matrix and the IDCORD vector to the punch output file in DMI format. Once again, DMAP is being used strictly as a transfer agent to pass the data from the user to the processor program.

Statement F1 is inserted at position 103 of RF3 after the READ module has output LAMA. It picks up data block LAMA, which is a table, and sends it to the punch output file in DTI format. Parameter 1 is given the BCD value "FN" to use in setting up the continuation cards.

Statement Pl does a row partition on the matrix of eigenvectors, PHIG. It is inserted at R.F. 3 statement \# 111 after the matrix PHIG has been checkpointed. The position of the column partitioning vector is left deliberately unspecified, while TESET is entered at the position of the row partitioning vector (RP). TESET has values at internal sequence positions of the G set which correspond to the degrees of freedom of points that were instrumented on the test article. PARTN separates the rows into two sub matrices according to whether there is a value in the partitioning vector for that row or not. The symbolic name of the partition matching the row of RP without values is A_{11}, and that, matching the rows of RP with values is A_{21}. Since our interest is in the A_{21} partition only, all positions of the output data blocks from PARTN are left purged, except the second. The name given to the A_{21} partition is PHITE. Giving a positive value of the
parameter SYM in the first position indicates a non-symmetric partition. The positive value given to parameter, TYPE, in the second position indicates that the output partitions are real single precision matrices. PHIG is a real single precision matrix so any of its partitions will be the same. The value 2 for the 3 rd and 4 th positions indicates that their forms will be general rectangular.

Statement P2 picks up data blocks PHITE and TESET and writes them on the punch output file in DMI format. Parameter P 1 in the first position is negative to indicate that data being output should be sent to the FORTRAN logical unit. BCD value, MOD, is assigned to the second parameter for use in setting up continuation cards for the PHITE matrix, and BCD value, DOF, is assigned to the third parameter for use in setting up continuation cards for the TESET vector.

The explanation for why ALTER 125 was selected for inserting packet P will be delayed until after the explanation of statement S8. Statements S1, S2, and S3 define parameters SYM \#PLAN through the module PARAM using logical operator MPY (multiply). In each instance, variable parameter IN1 is multiplied by the constant 1 to produce the output value. In effect, the value given to the variable parameter IN 1 is the value of the output.

Statement S 4 uses the module PARAM to change the value of the parameter which controls the printing of NASTRAN output (OUTTAP) that is located in the system common block (SYSTEM) of NASTRAN. The purpose of S4 is to change the OUTTAP assignment from the value of the FORTRAN logical unit for printing to the value of the FORTRAN logical unit for punching. The logical operator SYST uses the value for the $3 r d$ parameter to catalog the sequence number of of the parameter in the system common block. Referring to Section 2.4.1.8 of the Programmer's Manual, one finds that the sequence number for parameter OUTTAP is 2 , so 2 is entered as the value for the third parameter. SYST uses the value of the 4 th parameter to catalog the assignment number of the FORTRAN logical unit. These FORTRAN assignments are arbitrary and depend upon the decision of the systems programmer at the time that NASTRAN is installed on a computer. The punch output was assigned to FORTRAN logical unit 77 at the time that NASTRAN was installed on the computer used for developing this method, so in order to direct the output data blocks of a module under the management of system common block, named OUTTAP, to go to the punch buffer, 77 is entered as the value for the 4 th parameter. The BCD value DUM given to the $2 n d$ parameter is meaningless, because this parameter is not used in the operation of the logical operator SYST.

Statements S5, S6, and S7 involve module PRTPARM. The value 0 assigned to the $1 s t$ parameter enables the module to operate as a parameter printer. The particular BCD values assigned to the $2 n d$ parameter discriminate amongst all possible parameters and will select only those having the indicated BCD names.

Statement S8 uses the module PARAM in the same sense as in statement S4 to assign the FORTRAN logical unit 6 to the system common block parameter OUTTAP. Making this temporary reassignment of a major regulation item should be treated gingerly so as not to interfere with normal operations. Rapid restorationn is imperative. Care must be exercised when PARAM logical operator SYST is put into operation. Since the printer output block is involved, care must be taken to ensure that anything destined for the print buffer has been already sent there, so that ${ }_{\text {: }}$ only those things that are governed by parameter OUTTAP during this temporary assignment are routed to the punch buffer. Statement 125 occurs after module OFP has directed OEIGS, LAMA, and DQM1 to the print buffer and before new quantities from SDR2 are being readied for print-
ing. Thus diverting OUTTAP temporarily to punch at statement 125 does not endanger the printing of any important quantities.

Statement W1 is inserted at position 128 to isolate it from those in packet S , as well as, to make sure that it would not be caught in a bypass caused by a conditional jump. It picks up the data blocks delivered by the analyst in the bulk data in DMI format, and writes them on the punch output file in DMI format once again. Parameter P1 in the 1 st position is negative to indicate that the data output should be sent to the FORTRAN logical unit. The BCD value, LIS, is assigned to the $2 n d$ parameter, and FRM to the $3 r d$ parameter for use in setting up the continuation cards.


```
* THIS DMAP ALTER PACKET IS DESIGNED TO PROVIDE OUTPUT TO PROCESSORS
* RELATION PROGRAM ***STATCORR*** FOR COMPARING ANALYIICALLY DEIIIVED
* MODAL DATA WITH EXPERIMENTALLY DERIVED MODAL DATA.
& SUBPACKETS ***F*** AND ***P*** WILL ALWAYS BE USED, SUBPACKET ***S***
* IS DESIGNED FOR USE WHEN BOTH ANALYTICAL AND EXPERIMENTAL DATA ARE
R REPORTED FOR ONLY A SINGLE SEGMENT OF REFLECTIVE SYMNIETRY IN ONE,
* TWO, OR THREE COORDINATE DIRECTIONS. SUBPACKET ***W***IS DESIGNED
* FOR THE CASE WHEN REFLECTIVE SYMMETRY IS USED WITH,ANALYSIS BUT NOT
WITH TEST.
*
&********************FREQUENCY DATA*************************************
$
&F
TABPCH LAMA,,,,//FN 
8
&F WORD 5 IN EACH ENTRY OF RECORD 2 OF THE LAMA TABLE GIVES THE CYCLIC
&F FREQUENCY FOR A MODE.
FF WORD 6 IN EACH ENTRY OF RECORD 2 OF THE LAMA TABLE GIVES THE GENER-
SF ALIZED MASS FOR A MODE.
&F WORD 7 IN EACH ENTRY OF RECORD 2 OF THE LAMA TABLE GIVES THE GENER-
&F ALIZED STIFFNESS FOR A MODE.
8
ALTER 111
8P
&P PHIG IS PARTITIONED TO THAT SET OF FREEDONS WHICH ARE TO BE
&P INSTRUNENTED ON THE TEST ARTICLE.
8P
&P THE PARTTIONING VECTOR TESET IS INPUT USING DMI. THE PRECEDING
$P EIGENVALUE RUN SHOULD INCLUDE DIAG 21,22 TO GIVE THE CORRELATION
SP BETWEEN THE INTERNAL D.O.F.'S AND THE EXTERNAL NUMBERING. TIIE
&P PARTITIONING VEGTOR IS ORGANIZED ACCORDING TO INTEIUNAL SFOUENCING.
&P MODULE PARTN IS ORGANIZED TO DO A ROW PARTIITION AMONGST THE DEGILEES
SP OF FREEDOM IN ORDER TO PRESENT A DESCRIPTION OF THE MODAL BEHAVIOR
OP ONLY IN TERMS OF THE INSTRUMENTED D.O.F.'S.
8P
&P THE ZERO CAND OF DMI HAS THESE ENTRIES: FIELD 1, DMI; FIELD 2, TESET;
```

```
8P_FIELD 3,ZERO
8P}\mp@subsup{}{}{-
&P FIELDS 5 & 6, 1--TO INDICATE SINGLE PRECISION IN AND SINGLE PRECISION
EP OUT; FIELD 7, BLANK; FIELD 8, G-SIZE; FIELD 9, 1--TO INDICATE A
$P SINGLE COLUNN OUTPUT.
& $P P
P THE NEXT DATA CARD OF DMI HAS TIESE ENTRIES: FIELD 1, DMI; FIELD 2,
PP TESET; FIELD 3, 1--TO INDICATE DATA FOLLOWING PERTAINS TO COLUHIN 1
            OF THE OUTPUT MATRIX;
8P FIELD 4, THE INTERNAL SEQUENCE NUMBER, IN INTEGER FORMAT, OF
8P THE FIRST INSTRUNENTED D.O.F. ACCORDING TO THE DIAG 2I TABULATION;
&P FIELD 5, THE EXTERNAL GRID POINT ID NUMBER CORRESPONDING TO TIIE.
8P FIMST DOF. IT IS TO BE WRITTEN AS A REAL NUMBER, I.E. GP ID
8P FOLLOWED BY A PERIOD.
8P FIELD 6, TIIE SECOND INSTRUMENTED D.O.F. PER DIAG 21; INTEGER.
SP FIELD 7, THE EXTERNAL GRID POINT ID NUMBER CORRESPONDING TO TIIE
SP SECOND DOF. IT IS TO BE WRITTEN AS A REAL NUMBER.
SP CONTINUE IN A SIMILAR MANNER UNTIL ALL INSTRUMENTED POINTS IIAVE
8P BEEN ENTERED. IN THE CASE OF SUBPACKET ***W*** THE GRID POINT
8P NUNBBERS INCLUDE CLONES AND IMAGES.
8P1
PARTN PHIG, ,TESET/,PHITE, / C,N,+1/C,N,1/C,N,2/C,N,2 S
8P
8P MATRIX PIIITE IIAS BEEN PARTITIONED FROM TIEE PIIIG DATA BLOCKK. PIITE
P CONTAINS MODAL DATA FOR ONLY THOSE DOF THAT WERE INSTRUMENTED. S
8P
8P2
OUTPUT3 PBITE,TESET //C,N,-1/C,Y,N1=VCT/C,Y,N2=DOF $
8P
&P PLITE AND TESET ARE OUTPUT IN DMI FORMAT AS PUNCH FILES.
8P IF THE USER WANTS THE
SP DII CARD IMAGES TO BE WRITTEN TO A DISK FILE INSTEAD OF BEING PUNCIED,
SP TIIE USER MUST SUPPLY THE APPROPRIATE JOB CONTROL LANGUAGE STATEMIENTS.
8
8*****************************SYMMITTRY FOR BOTH***************************
5
8S TUE ANALYST SHOULD SUBSTITUTE THE PROPER ENTRIES FOR EACII OF TIIE
8S VARIABLES REPRESENTED IN *X*X*X*X* FORMAT IN THE NEXT PARAGILAPH.
8
8
8S IF THE ANALYSIS IS TO BE CONFINED TO ONLY ONE SEGMENT OF REFLECTIVE
&S SYMMETRY AND SIMULTANEOUSLY IF TEST RESULTS WILL ALSO BE REPORTED
8S FOR ONLY ONE SEGMENT, THEN THE TYPE OF MODES BEING PRODUCED IN EACH
&S RUN MUST BE INDICATED IN THE FOLLOWING THREE PARAMETEN STATENENTS.
&S FOR RECORD PURPOSES, THE FIRST PLANE OF SYMMETRY IS PERPENDICULAR
8 TO THE *A*A*A*A* AXIS AND CUTS THLAT AXIS AT *A*A*A*A* (RECTTANGULAR),
sS OR IS AN R:Z PLANE THRU THETA = *T*T*T*T*, PHI = 0 (CYLINDRICAL),
8S OR IS A PLANE THRU THETA = 0, PHI = 0 (SPHERICAL).
&S THE SECOND PLANE OF SYNNETRY IS PERPENDICULAR TO TIIE *B*B*B*B* AYIS
8S AND CUTS THAT AXIS AT *B*B*B*B* (IECTANGULAR), OR IS AN II:Z PLANE
8S TIIRU TIIETA = [*T*T*T*T* + PI/2], PII| = 0(CYLINDRICAL), OR IS A PLANE
&S THRU THETA = PI/2, PHI = 0 (SPHERICAL).
SS THE THIRD PLANE OF SYMINETRY IS PERPENDICULAR TO TIE *C*C*C*C* AXIS
8S AND CUTS THAT AXIS AT *C*C*C*C* (RECTANGULAR), OR IS PERPENDICULAR
8S TO THE Z AXIS AND CUTS TIIAT AXIS ATT Z = *V*V*V*V* (CYLINDRICNL).
8S OR IS A PLANE AT PHI = PI/2 FOR ALL THETA (SPHERICAL).
```

```
$S
$5
$S THE DESIGNATION FOR A SYMMETRICAL REFLECTION W.R.T. AN AYIS IS +1;
SS ENTER INI = +1 ON THE PARAHI CARD IN PLACE OF XXX.
$S THE DESIGNATION FOR ANTI-SYMRIETRIC REFLECTION W.R.T. AN AKIS IS -1;
8S ENTER IN 1 = - I ON THE PARAM CARD IN PLACE OF XXX.
SS THE DESIGNATION FOR ABSENCE OF SYMINETRY WITH RESPECT TO AN AXIS IS D;
$S ENTER IN1 = 0 ON THE PARAM CARD IN PLACE OF XXX.
$
$S
SSSGALTER :25
SS }
$
$
SS VALUES r.i SYMI*PLAN WILL CHANGE EVERY TIME THE CONSTRAINTS
ss OF SYTRLLTRY CHANGE.
8
S
SSISPARAMI //C,N,NIPY/V,Y,SYMIPLAN/V,N,IN1=XXX/V,N,IN2=1 3
SS
GS TIIS STATEMENT SAYS WIETIIER TIEE MODE SHAPE IS SYMNETRIC OR ANTI-
GS SYMIETRIC OR IAS NO SYMIETRY WITII RESPECT TO PLANE 1.
5s
SS2
GS2SPARAH1//C,N,NIPY/V,Y,SYMIPPLAN/V,N,INI=XXX/V,N,IN2=1 %
SS
SS THIS STATEPIENT TELLS VIIAT KIND OF SYITIETRY PERTAINS TO PLANE 2.
ss
SS3
SS3SPARAII //C,N,MPY/V,Y,SYMBPLAN/V,N,IN1= XXX/V,N,IN2=1 S
SS
SG TIIIS STATENENT TELLS WHAT KIND OF SYMMETRY PERTAINS TO PLANE 3.
S
6S4
ES<OPARAM //C,N,SYST/V,N,DUM/C,N,2/C,N,77 3
SS
SS CIIANGES TITE FORTRAN LOGICAL UNIT FOR TIIE SYSTEM COMMON DATA BLOCK,
SS CNLLED OIITTUT, FROM ITS USUAL VAX VALUE
&S OF 6 TO ``E VAX VALUE RESERVED FOR PUNCH WHICH IS 77,SO THAT IT CAN
sS BE WRITTEIf T0 THE SAME DISK FILE AS THE CIIKPNT DICTIONARY AND THE
SS OUTPUT3 FILES.
SS
S85
SS5OPRTPARAI//C,N,0/C,N,SYMIPLAN S
$S
$S6
SSGSPRTPARHI//C,N,O/C,N,SYMLPLAN S
SS
$57
SSTSPRTPARMI//C,N,0/C,N,SYMBPLAN:
SS
SS3
GS3SPAMAH1//C,N,SYST/V,N,RUM/C,N,2/C,N,6
sS
$S RESTORES IILE FORTRAN LOGICAL UNIT FOR OUTPUT BACK TO THE VAX VALUE
SS OF 6 NON THAT THE NEED FOR ASSIGNING IT TO 77 IS OVER.
$
```

```
*
$**k***************ANALYTICAL SYMIETRY ONLY****************************
W
$W JSE SUBPACKET **W** IF EXPERIMENTAL DATA COMES FROM TIIE MIOLE STRUCTURE
SW but analytical data comes from a basic segment of SyMIETITY. tIIE
$W analytical basic segment will Contain points corresponding to tuose
3W TEST POINTS IN THE basic segnent. in addition tife analytical basic
$W segment will contain points which are meflected images of all test points
&W huicil are located outside of tie basic segment. tie partitioning
$ VECTOR ***TESET*** WILL INCLUDE THE DIRECT POINTS PLUS ALL CLONED AND
&W IMAGE POINTS. ALL REFLECTED POINTS
SW NUST BE TALLIED FOR ***STATCORR*** TO PROCESS TIIE DATA
8W CORRECTLY. THIS TALLY IS COMmUNICATED IN THE FORM OF aN EIGIT
8W COLUNNED MATRIX CALLED ***DOFLIST*** -
8W
8W
8W
sW
8W WARNING. WARNING. BE SURE THAT CLONED GRID POINTS
% ARE INCLUDED IN THE BULK DATA AND ARE FULLY CONSTTAINED.
8W
$W
$W
$W
$W EACH OF TIIE 8 COLUMNS IS nESERVED FOR A PARTICULAR OCTANT. THESE
&W ARE THE DEFINITIONS OF THE OCTANTS.
&W OCTANT I IS THE bASIC SEGMENT. OCTANT TWO IS TTIE REFLECTION OF TIIE
$w basic segrient about Symiplan. octant four is the reflection of tile
$W basic segment about symzplan. octant three is in betrneen octants
&W TNO AND FOUR. OCTANT FIVE IS THE REFLECTION OF TIE bASIC SEGNIENT
$W abOUT SYMBPLAN. OCTANTS SIX, SEVEN, aND EIGET ARE ROTATED ANAY
$W from octant five in the same SENSE that octants two, three, and
$W FOUR ARE ROTATED ANAY FROM OCTANT ONE.
&W data fon tallying the image points reflected from eacil octant is
&W ORGANIZED IN DMI INPUT. COLUMN ONE IS RESERVED FOR LISTING ALL
sW POINTS PLUS COMPONENT dIRECTIONS WHICH ARE COMPANIONS
&W OF THE INSTRUMENTED POINTS IN THE
$w bASIC SEGMENT. COLUMN THO IS RESERVED FOR LISTING all UNIQUE
&W POINTS OR PARENTS OF CLONES
&W in TIIE BASIC SEGPIENT WIICII ARE feflections of instrunENTED
&W POINTS FROM OCTANT *2. SIMILARLY, COLUMN THREE IS RESERVED FON
& l listing all UNiquE points OR parents of Clones in tie basic Segient
&W WHICH ARE REFLECTIONS OF
&W INSTRUMENTED POINTS FROM OCTANT *3. COL 4 LIST FOR OCTANT 4 AND
SW SO FORTII TIIRU COL 8 FOR OCTANT 8.
8W EXAMPLES OF EACH OF THE NINE DMI LOGICAL CARDS FOR THIS MATRIX
$W EXPRESSED IN FREE FIELD FORMAT ARE:
&W DMI, DOFLIST,0,2,1,1,BLANK,G-SIZE,8, BLANK
*W DHI,DOFLIST, 1,INT DOF *,GP *,INT DOF *,GP *,INT DOF *,GP *,CONT'N
&W DMI,DOFLIST,2,INT DOF *,GP *,INT DOF *,GP *,INT DOF *,GP *,CONT'N
&W DMI DOFLIST,3,INT DOF *,GP *,INT DOF *,GP *,INT DOF *,GP *,CONT'N
&W DMI ETC FOR COLUMNS 4 THRU B.
&W notice that the content of cards from columiv one et seq. ane
&W paired quantities. the first of the pair is the now nuribeil
8w WIICH is the intennal degife of freedom number Writiten as an
8W INTEGER. THE SECOND OF TIE PAIR IS A REAL NUMBER FORM OF
SW THE GRID POINT ID CORRESPONDING TO THE INTERNAL DOF -
8w Pairs for a given columN
sw overflow onto continuation cahds until all points for an octant
&W are taldied. data fon tiE Succeeding columN constituTE a NEW
&W logical call star'TING WITIL THE COLUIN NUMBER TILEN FOLLOWED by ITS
```

```
$W SUBSEQUUENT PAIRS
$W
8W
$W
$W A SECOND DMI VECTOR NAMED ***IDCORD*** IS PUT INTO THE BULR DATA
$W TO SPECIFY THE ORIENTATION OF BASIC COORDINATE PLANES WITH THE
8W PLANES OF SYHIETRY. VALUE # IS THE BASIC COMPONENT THAT IS
$W PERPENDICULAR TO THE IST PLANE OF SYYIIETRY. VALUE #2 IS THE
$W BASIC COMPONENT THAT IS PERPENDICULAR TO THE 2ND PLANE OF
$W SYMNETRY. SET VALUE $2 = 0.0 IF THERE IS ONLY ONE PLAINE OF
$W SYNRETRY. NO ENTRY IS MADE FOR TIE THIND COMPONENT REGARDLESS
8N OF THE EXISTENCE OF A THIRD PLANE OF SYITETRY.
$W
8N
$W
$W W$ALTER 126
$W1
$N1$OUTPUT3 DOFLIST,IDCORD//C,N,-1/C,Y,LIS/C,Y,FRM S
$W
$W POST PROCESSOR NILL APPLY THE APPROPRIATE SIGN TO THE
$W REFLECTED DISPLACEPENTS
$W ACCORDING TO THE COHBINATION OF INI PARANETERS ENTERED IN STATEIENTS
$W Si, S2, AND S3.
*
ENDALTER
```


MERGE

In case eigenvectors have been obtained from several disjoint NASTRAN runs, it is possible to combine these vectors into a single set for use with STATCORR. Probably some overlap of frequency ranges would occur with consequent duplication of vectors. The pre-processor program MERGE accepts files of eigenvectors from several runs and discards all duplicates. It reassembles the resulting into a sequence according to ascending frequencies and delivers them as a single file. MERGE operates interactively and the user responds to the on-line prompts.

100	C	PROGRAM MERGE
200	c	
300	C	THIS PROGRAM WILL MERGE TWO MATRIX FILES WITH THE SAME NUMBER
400	C	OF COLUMNS INTO A SINGLE MATRIX WITH THE SAME NUMBER OF COL-
500	C	UMNS AND A TOTAL NUMBER OF ROWS EQUAL TO THE SUM OF THE NUNBER
600	C	OF ROWS IN THE ORIGINAL TWO MATRICES.
700	C	A CORRESPONDING COLUMIN IN EACH MATRIX (NOT NECESSARILY THE SAME
800	C	COLUMN NUMBER) MUST BE IN ASCENDING SORT, AND A SORTED MERGE WILL
900	C	BE DONE BASED ON THE RESPECTIVE CORRESPONDING COLUMNS.
1000	C	IF DESIRED, DUPLICATED ROWS WILL BE DELETED; A MAXIMUM RELATIVE
1100	C	DIFFERENCE (EPSILON) MAY BE SPECIFIED FOR DEFINING "EQUALITY";
1200	C	OR A DEFAULT VALUE MAY BE USED.
1300	C	IF DESIRED, ROWS CONTAINING TERMS BELOW A MAXIMUM THRESHOLD VALUE
1400	C	WILL BE DELETED; THE THRESHOLD VALUE MAY BE SPECIFIED, OR A
1500	C	default value may be used.
1600	C	IF DESIRED, ROWS CONTAINING TERMS ABOVE A MINIMUM CEILING VALUE
1700	C	WILL BE DELETED; THE CEILING VALUE MAY BE SPECIFIED, OR A
1800	C	DEFAULT VALUE MAY BE USED.
1900	C	ADDITIONAL MATRIX PAIRS THAT ARE ASSOCIATED RESPECTIVELY WITHITHE
2000	C	ORIGINAL MATRIX PAIR MAY ALSO BE MERGED TOGETHER, BASED ON THE
2100	C	SORTED MERGE OF THE ORIGINAL PAIR. IN THIS CASE, COLUMNS OF AN
2200	C	ASSOCIATED MATRIX MUST CORRESPOND TO ROWS OF THE ORIGINAL MATRIX
2300	C	WITH WHICH IT IS ASSOCIATED. ANY DELETED DUPLICATE, BELOW-
2400	C	THRESHOLD, OR ABOVE-CEILING ROWS OF THE ORIGINAL MATRIX WILL
2500	C	RESULT IN CORRESPOND INGLY DELETED COLUMINS OF THE ASSOCIATED
2600	C	MERGED MATRIX.

```
    PROGRAM MERGE
    C
        CHARACTER*B MATRIX1, MATRIX2
        CHARACTER*1 YESNO
        REAL SORTLIST(2,100)
        INTEGER MTXKEY(200), ROWKEY(200)
C
        DO 100 ISET= 1,1000000
        ASK IF ANOTHER SET IS DESIRED
        TYPE 1000
        ACCEPT 2000, YESNO
            IF (YESNO .NE. 'Y') COTO 150
        REQUEST NAMES & OPEN MATRIX FILES (LOG. UNIT NOS. 182)
        CALL GETKEYMTX(MATRIX1, MATRI X2, KROW1, KROW2,
                        KCOL1,KCOL2,*100)
        REQUEST KEY COLUMNS FOR SORTED MERGE, & READ THEM INTO ARRAY
            CALL GETSORTCOL( MATHIX1, MATRIX2, KROW1, KROW2,
                KCOL1, KCOL2,SORTLIST)
        GENERATE KEY LISTS FOR MERGING
        GALL KEYLIST( SORTLIST, KROW1, KROW2,MTXKEY, ROWKEY)
        SET TOTAL NUMBER OF ROWS (PRIOR TO DELETIONS)
        KOUT = KROW1 + KROW2
        CULL DUPLICATE VALUES
            CALL DELDUPES(SORTLIST, MTXKEY, ROWKEY, KROW1, KROW2, KOUTX
        CULL BELOW-THRESHOLD VALUES
            CALL DELTHRESH(SORTLIST, MTXKEY, ROWKEYY,
                KROW1, KROW2, KOUT, * 100)
        CULL ABOVE-CEILING VALUES
            CALL DELCEILING(SORTLIST, MTXKEY, ROWKEY,
                                    KROW1, KROW2, KOUT, * 100)
        MERGE KEY MATRICES INTO OUTPUT MATRIX. % CLOSE MATRIX FILES
                CALL MERGEKEY(MTXKEY, KOUT)
        MERGE ASSOCIATED MATRIX PAIRS
            CALL ASSOCIATE(MTXKEY, KROW1, KROW2,GOUT)
        CONTINUE
    STOP 'END OF MATRIX SET REQUESTS'
    FORMAT(/,' MERGE ANOTHER KEY MATRIX SET? (Y OR N): ,s)
    FORMAT(A1)
    END
```

100		SUBROUTINE ASSOCIATE (HTXXKEY, KROW1, KROW2, KOUT)
200	C	
300	C	MERGE ASSOCIATED MATRIX PAIRS
400	C	
500		INTEGER MTXKEY(200)
600		CHARACTER* 1 YESNO
706	C	
800		D0 100 I ASSOC= 1, 1000000
900	C	ASK IF ANOTHER ASSOCIATED MATRIX PAIR IS DESIRED
1000		TYPE 1000
1100		ACCEPT 2000, YESNO
1200		IF (YESNO . NE. 'Y') COTO 150
1300	C	OPEN ASSOCIATED MATRIX PAIR (LOGICAL UNIT NOS. 182) AND
1400	C	CHECK FOR VALID DIMENSIONS.
1500		CALL GETASCMTX (KROW1, KROW2, MROW, NCOL, * 100)
1600	C	MERGE ASOCIATED PAIR INTO OUTPUT MATRIX FILE 8 CLOSE FILES
1700		CALL MERGEASC (MTXKEY, KOUT, MROW, NCOL)
1800	100	CONTINUE
1900	C	NO MORE ASSOCIATED MATRIX REQUESTS
2000	150	TYPE *, 'END OF ASSOCIATED MATRIX Requests'
2100		RETURN
2200	C_{1000}	FORMAT(), MERGE ANOTHER ASSOCIATED PAIR OF MATRICES? (Y OR N)
2400		* , ©)
2500	2000	FORMAT (A1)
2600		END


```
100
200
300
4 0 0
5 0 0
600
700
800
906
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300 C
3400 15
3500 C
3600
3700
3800
3900
4000
```

```
    SUBROUTINE DELTHRESH(SORTL IST, MTXKEY, ROWKEY, KROW1, KROW2, KOUT, *)
```

 SUBROUTINE DELTHRESH(SORTL IST, MTXKEY, ROWKEY, KROW1, KROW2, KOUT, *)
 C DELETE ROWS WHERE THE MERGING TERM IS BELOW A GIVEN THRESHOLD
C DELETE ROWS WHERE THE MERGING TERM IS BELOW A GIVEN THRESHOLD
C VALUE.
C VALUE.
INTEGER MTXKEY(200), ROWKEY(200):
INTEGER MTXKEY(200), ROWKEY(200):
REAL SORTLIST(2, 100)
REAL SORTLIST(2, 100)
CIARACTER*1 YESNO
CIARACTER*1 YESNO
C ASK IF THRESHOLD CULLING IS DESIRED
C ASK IF THRESHOLD CULLING IS DESIRED
TYPE 1000
TYPE 1000
ACCEPT 2000, YESNO
ACCEPT 2000, YESNO
IF (YESNO .NE. 'Y') RETURN
IF (YESNO .NE. 'Y') RETURN
C SET DEFAULT THRESHOLD \& REQUEST INPUT VALUE TO REPLACE IT
C SET DEFAULT THRESHOLD \& REQUEST INPUT VALUE TO REPLACE IT
THRESH = 1.0
THRESH = 1.0
TYPE 3000, THRESH
TYPE 3000, THRESH
ACCEPT *, THRESH
ACCEPT *, THRESH
C CULL OUT BELOW-THRESHOLD ROWS
C CULL OUT BELOW-THRESHOLD ROWS
D0 100 I= 1, KROW1+KROW2
D0 100 I= 1, KROW1+KROW2
IF (MTXKEY(I) .LT. 0) GOTO 100
IF (MTXKEY(I) .LT. 0) GOTO 100
IF (SORTLIST(MTXKKEY(I), ROWKEY(I)) .GE. THRESH) COTO 150
IF (SORTLIST(MTXKKEY(I), ROWKEY(I)) .GE. THRESH) COTO 150
MTXKEY(I) = -MTXKEY(I)
MTXKEY(I) = -MTXKEY(I)
KOUT = KOUT - I
KOUT = KOUT - I
100 CONTINUE
100 CONTINUE
C CHECK TO SEE IF ANY ROWS REMAIN
C CHECK TO SEE IF ANY ROWS REMAIN
IF (KOUT .EQ. O) THEN
IF (KOUT .EQ. O) THEN
TYPE *, 'NO NERGING:'
TYPE *, 'NO NERGING:'
TYPE *, 'ALL TERMS ARE less tHAN THRESHOLD VALUE:',THRESH
TYPE *, 'ALL TERMS ARE less tHAN THRESHOLD VALUE:',THRESH
CLOSE(UNIT=1)
CLOSE(UNIT=1)
CLOSE(UN IT=2)
CLOSE(UN IT=2)
RETURN 1
RETURN 1
END IF
END IF
C
C
150
150
1000 FORMAT(/,, DELETE VALUES BELOW A THRESHOLD? (Y OR N): , \&)
1000 FORMAT(/,, DELETE VALUES BELOW A THRESHOLD? (Y OR N): , \&)
2000 FORMAT(A1)
2000 FORMAT(A1)
3000 FORMAT(6K,' ENTER VALUE FOR THRESHHOLD. "," FOR DEFAULT',
3000 FORMAT(6K,' ENTER VALUE FOR THRESHHOLD. "," FOR DEFAULT',
* END 1PE8.1,' : ', %)

```
    * END 1PE8.1,' : ', %)
```

```
100
200
306
400
500
600
700
800
900
1000
1100
1200
1 3 0 0
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2 5 0 0
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4 0 0 0
4 1 0 0
```

```
SUBROUTHE DELCEILING(SORILIST,MKKEY,MOWKEY,KROW1,KRON2,KOUT,*)
```

SUBROUTHE DELCEILING(SORILIST,MKKEY,MOWKEY,KROW1,KRON2,KOUT,*)
C DELETE ROWS WHERE THE MERGING TERM IS ABOVE A GIVEN CEILING
C DELETE ROWS WHERE THE MERGING TERM IS ABOVE A GIVEN CEILING
C valUE.
C valUE.
C INTEGER MTXKEY(200), ROWKEY(200)
C INTEGER MTXKEY(200), ROWKEY(200)
REAL SORTLIST(2, 100)
REAL SORTLIST(2, 100)
CHARACTER*1 YESNO
CHARACTER*1 YESNO
C
C
C ASK IF CEILING CULLING IS DESIRED
C ASK IF CEILING CULLING IS DESIRED
TYPE 1000
TYPE 1000
ACCEPT 2000, YESNO
ACCEPT 2000, YESNO
IF (YESNO .NE. 'Y') RETURN
IF (YESNO .NE. 'Y') RETURN
C SET DEFAULT CEILING % REQUEST INPUT VALUE.TO REPLACE IT
C SET DEFAULT CEILING % REQUEST INPUT VALUE.TO REPLACE IT
CEIL = 1.0E+35
CEIL = 1.0E+35
TYPE 3000, CEIL
TYPE 3000, CEIL
ACCEPT *, CEIL
ACCEPT *, CEIL
C CULL OUT ABOVE-CEILING ROWS
C CULL OUT ABOVE-CEILING ROWS
DO 100 I= 1, KROW 1 +KROW2
DO 100 I= 1, KROW 1 +KROW2
IF (MTXKEY(I) .LT. 6) COTO 100
IF (MTXKEY(I) .LT. 6) COTO 100
IF (SORTLIST(MTXKEY(I), ROWKEY(I)) .GT. CEIL) THEN
IF (SORTLIST(MTXKEY(I), ROWKEY(I)) .GT. CEIL) THEN
MTXKEY(I) = -MTXKEY(I)
MTXKEY(I) = -MTXKEY(I)
KOUT = KOUT - 1
KOUT = KOUT - 1
END IF
END IF
100 CONTINUE
100 CONTINUE
C CHECK TO SEE IF ANY ROWS REMAIN ?
C CHECK TO SEE IF ANY ROWS REMAIN ?
IF (KOUT .EQ. 6) THEN
IF (KOUT .EQ. 6) THEN
TYPE *, 'NO MERGING:'
TYPE *, 'NO MERGING:'
TYPE *, 'aLL TERMS ARE GREATER THAN CEILING VALUE:',CEIL
TYPE *, 'aLL TERMS ARE GREATER THAN CEILING VALUE:',CEIL
CLOSE(UNIT=1)
CLOSE(UNIT=1)
CLOSE(UNIT=2)
CLOSE(UNIT=2)
RETURN 1
RETURN 1
END IF
END IF
C ALL REMAINING TERMS ARE LESS THAN OR EQUAL TO CEILING
C ALL REMAINING TERMS ARE LESS THAN OR EQUAL TO CEILING
150 RETURN
150 RETURN
C
C
1000 FORMAT(/,' DELETE VALUES ABOVE A CEILING? (Y OR N): , s)
1000 FORMAT(/,' DELETE VALUES ABOVE A CEILING? (Y OR N): , s)
2000 FORMAT(A1)
2000 FORMAT(A1)
3000 FORIAT(6X,'ENTER VALUE FOR CEILING. "," FOR DEFAULT`', 3000 FORIAT(6X,'ENTER VALUE FOR CEILING. "," FOR DEFAULT`',
FORIAT(6X,'ENTER VALUE
FORIAT(6X,'ENTER VALUE
END

```
        END
```



```
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3006
3100
3200
3300
3400
3500
3600
3700
C
C GET KEY MATRIX FILENAMES, OPEN THEM (FORTRAN LOGICAL UNIT
C NOS. 182), READ HEADER RECORDS, AND CHECK FOR COMPATIBLE SIZES.
C
    CHARACTER*35 FILNAM1, FILNAM2
    CHARACTER*8, MATRIX1,MATRIX2
C
C FIRST MATRIX:
    FIRST MATRIX: , 1', '1,
        ACCEPT 6000, FILNAMI
        OPEN( UNIT= 1, NAME= F ILNAM1, TYPE= 'OLD', READONLY,
    *
                        CARRI AGECONTROL='LIST', ERR=1)
        READ(1,3000) MATRIX1, KROW1, KCOL1
C SECOND MATRIX:
2 TYPE 2000, '2', '2'
        ACCEPT 6000, F ILNAM2
        OPEN( UNIT=2, NAME=FILNAM2, TYPE= 'OLD', READONLY,
    * CARRIAGECONTROL='LIST',ERR=2)
        READ(2,3006) MATRI X2, KROW2, KCOL2
C CHECK FOR SAME NUMBER OF COLUNNS
        IF (KCOL1 . NE. KCOL2) THEN.
            CLOSE( UNIT=1)
            CLOSE( UNIT=2)
            TYPE 7000, '1> ', MATRIX1, KROW1, KCOL1
            TYPE 7000, '2> ', MATRIX2, KROW2, KCOL2
            TYPE *, 'NO MERGING DONE:'
            TYPE *, 'MATRICES HAVE DIFFERENT NO. OF COLUMNS'
            RETURN 1
            END IF
    RETURN
C
2000
3000
6000
6000 FORMAT( A35)
7000 FORMAT( 6X, A3, AB,' IS A ',I8,' ROW BY ',IB,' MATRIX')
    END
```

100		SUBROUTINE GETSORTCOLCMATRIX1, MATRIX2, KROW1, KROW2,
200		* KCOL1, KCOL2, SORTLIST)
300	C	
400	C	DETERMINE KEY COLUMNS FOR SORTED MERGE, AND READ THEM
500	C	INTO SORTING ARRAY, SORTLIST.
600	C	
700		REAL SORTLIST(2,100)
800		CHARACTER*8 MATRIX1, MATRIX2
900	C	
1000	C	FIRST MATRIX:
1100	1	TYPE 7000, ' 1 ¢ ', MATRIXI, KROW1, KCOL 1
1200		TYPE 8000
1300		ACCEPT *, MRGCOL1
1400		IF ((MRGCOL1.LT. 1) .OR. (MRGCOL1.GT. KCOL1)) G0T0 1
1500	C	SECOND MATRIX:
1600	2	TYPE 7000, '2> ', MATRIX2, KROW2, KCOL2
1700		TYPE 8000
1800		ACCEPT *, MRGCOL2
1900		IF (MRGCOL2.LT, 1) , OR. (MRGCOL2.GT. KCOL2)) G0TO 2
2000	C	READ MERGE COLUNNS INTO SORTING ARRAY
2100		D0 $100 \mathrm{~J}=1$, MRGCOL 1
2200		D0 $100 \mathrm{I}=1$, KROW1
2300		READ (1,9000) SORTLIST(1, 1)
2400	100	CONTINUE
2500		DO $200 \mathrm{~J}=1$, MRGCOL2
2600		D0 200 I = 1, KROW2
2700		READ (2,9006) SORTLIST(2, 1)
2800	200	CONTINUE
2900		RETURN
3000	C	
3100	7000	FORMAT (6X, A3, A8, ${ }^{\text {, }}$ IS A ', I8, (ROW BY ', I8,' COLUMN MATRIX')
3200	8000	FORMAT (9X, 'ENTER COLUNT NO. TO USE FOR SORTED MERGE: ', ${ }^{\text {) }}$
3300	9000	FORMAT(E16.8) END

```
C SUBROUTINE KEYLIST(SORTLIST, KROW1, KROW2,MTXKEY, ROWKEY)
C GENERATE KEY LISTS FOR SORTED MERGING
    REAL SORTLIST( 2, 100)
    INTEGER MTXKEY(100), ROWKEY(100):
    I1 = 1
    12 = 1
    DO 100 I= 1, KROW1+KROW2
        IF (II .GT. KROW1) THEN
            END OF COLUNH FOR MATRIX 1 REACHED; SET KEY FOR MATRIX 2
            MTXKEY(I) = 2
            ROWKEY(I) = 12
                12 = I2 + 1
            ELSE IF (I2 .GT. KROW2) THEN
                END OF COLUNN FOR MATRIX 2 REACHED; SET KEY FOR MATRIX 1
                MTXKEYY(I) = 1
                ROWKEY(I) = II
                I1=I1 + 1
            ELSE IF (SORTLIST(1,I1) .LE. SORTLIST(2,I2)) THEN
            SET KEY FOR MATRIX I
            MTXKEY( I) = 1
            ROWKEY(I) = II
            I1=I1 + 1
        ELSE
            SET KEY FOR MATRIX 2
            MTXXKEY(I) = 2
            ROWKEY(I) = 12
                I2=12+1
    END IF
    CONTINUE
        RETURN
        END
```

```
    SUBROUTINE MERGEASC( MTXKEY, KOUT, MROW, NCOL)
    200
    300
    400
    500
    600
    700
    800
    900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
```

```
C
```

C
C
C
MERGE ASSOCIATED MATRIX PAIR INTO OUTPUT FILE % CLOSE FILES
MERGE ASSOCIATED MATRIX PAIR INTO OUTPUT FILE % CLOSE FILES
INTEGER MTXKEY(200)
INTEGER MTXKEY(200)
CHARACTER FILNAMB*35, MATHIXB*B
CHARACTER FILNAMB*35, MATHIXB*B
C
C
GET NAPE OF NEW ASSOCIATED OUTPUT (PIERGED) MATRIX
GET NAPE OF NEW ASSOCIATED OUTPUT (PIERGED) MATRIX
TYPE 1000
TYPE 1000
ACCEPT 2000, FILNAM3
ACCEPT 2000, FILNAM3
TYPE 3000
TYPE 3000
ACCEPT 4000, MATRIX3
ACCEPT 4000, MATRIX3
OPEN(UNIT= 3, NAFE= FILNAMB, TYPE= 'NEW', CARRIAGECONTROL= 'LIST'')
OPEN(UNIT= 3, NAFE= FILNAMB, TYPE= 'NEW', CARRIAGECONTROL= 'LIST'')
C MERGE MATRIX PAIR INTO OUTPUT MATRIX
C MERGE MATRIX PAIR INTO OUTPUT MATRIX
HRITE(3,5000) MATRIX3, MROW, KOUT
HRITE(3,5000) MATRIX3, MROW, KOUT
DO 100 J=1, NCOL
DO 100 J=1, NCOL
DO 100 I = 1, MROW
DO 100 I = 1, MROW
READ(ABS(MTXKEY(J)) , 6000) TERM
READ(ABS(MTXKEY(J)) , 6000) TERM
IF (MTXKEY(J) .GT. ©) WRITE(3,7000) TERM
IF (MTXKEY(J) .GT. ©) WRITE(3,7000) TERM
100 CONTINUE
100 CONTINUE
C FINISHED: CLOSE FILES 8 RETURN
C FINISHED: CLOSE FILES 8 RETURN
CLOSE(UNIT=1)
CLOSE(UNIT=1)
CLOSE(UNIT= 2)
CLOSE(UNIT= 2)
CLOSE(UNIT=3)
CLOSE(UNIT=3)
RETURN
RETURN
C
C
1000 FORMAT(/,' ENTER NAME OF NEW (MERGED) MATRIX FILE: , ()
1000 FORMAT(/,' ENTER NAME OF NEW (MERGED) MATRIX FILE: , ()
2000 FORMAT(A35)
2000 FORMAT(A35)
3000 FORMAT(6X,' ENTER MATRIX NAME: ',$)
 3000 FORMAT(6X,' ENTER MATRIX NAME: ',$)
4000 FORMAT(A8)
4000 FORMAT(A8)
5000 FORMAT(A8, 218)
5000 FORMAT(A8, 218)
6000 FORMAT(E16.8)
6000 FORMAT(E16.8)
7000 FORMAT(IPE16.8)
7000 FORMAT(IPE16.8)
END

```
END
```

100	C$\mathbf{C}$$\mathbf{C}$	SUBROUTINE MERGEKEY(MTXKEY, KOUT)
200		
300		MERGE KEY MATRICES INTO OUTPUT MATRIX 8 CLOSE FILES
400		
500		INTEGER MTXKEY(200)
600		CHARACTER*8 MATRIX1,MATRIX2,MATRIX3, FILNAM3*35
700	C	
800	C	GET NAME OF OUTPUT KEY MATRIX 8 OPEN NEW FILE
900		TYPE 1000 (
1000		ACCEPT 2000, FILNAM3
1100		TYPE 3000
1200		ACCEPT 4000, MATR X 3
1300		OPEN(UNI IT 3, NAME= F ILNAM3, TYPE= ' NEW', CARRIAGECONTROL= 'LIST')
1400	C	MERGE KEY MATRICES INTO OUTPUT MATRIX ,
1500		HEWIND 1
1600		REWIND 2
1700		READ (1,5000) MATRIXI, KROW1, KCOL 1
1800		READ (2,5000) MATR I X2, KROW2, KCOL2
1900		WRITE(3,5000) MATRIX3, KOUT, KCOL1
2000		DO $100 \mathrm{~J}=1, \mathrm{KCOL} 1$
2100		DO $100 \mathrm{I}=1$, KROW $1+\mathrm{KROW} 2$
2200		READ (ABS (MTXKEY(I)) , 6000) TERM
2306		IF (MTXKEY(I) .GT. ©) WRITE (3,7000) TERM
2400	100	CONTINUE
2500	C	FINISHED: CLOSE FILES \& RETURN
2600		CLOSE (UNIT=1)
2700		CLOSE (UNIT=2)
2800		CLOSE (UN IT=3)
2900		FETURN
3006		
3100 3200	1000 2000	FORMAT (/, ENTER NAME OF NEW (MERGED) MATRIX FILE: ', s) FORMAT (A35)
3300	3000	FORMAT(6X, 'enter Matrix name: , ©)
3400	4000	FORMAT (A8)
3500	5000	FORMAT(A8, 2 I8)
3600	6000	FORMAT (E16.8)
3700	7000	FORMAT(1PE16.8)

STATCORR

The statistical correlation program STATCORR was written for implementation on the GSFC Code 750 VAX-11/780 computer system, and the analysis was done using the Code 750 VAX version of Level 17.5 NASTRAN. The empirical testing was performed by the GSFC Environmental Test \& Integration Branch and test mode shapes, frequencies, and damping were determined using the standard in-house processing software on a PDP-11/35 computer system.

Three data files are required to input analytical mode shape data to the STATCORR program: 1) the LAMA matrix file, which contains data from the NASTRAN LAMA table (frequency, mass, and stiffness vectors) and mode symmetry information; 2) the PHITE matrix file, which contains the eigenvectors generated by the NASTRAN run; 3) the grid point list file, obtained from the TESET vector. All the data required to build these files is contained in the NASTRAN punch file produced by using the DMAP ALTER package discussed earlier.

Since the NASTRAN analysis and the statistical correlation are performed on the same computer system, the NASTRAN punch file is immediately available for processing (to generate the analytical input files to STATCORR) by the appropriate intermediate processor programs MERGE,LAMA, UNPACKDMI, GRDPTLIST, discussed subsequently. These processor programs read the NASTRAN punch file and produce input files in the format required for input to STATCORR.

One data file for each experimental mode is required to input experimental mode shape data to the STATCORR program. Each experimental data file contains all data (frequency, damping, symmetry, gridpoint IDs, and mode shape data) to describe one experimental mode. The in-house Modal Survey processing program has the capability of generating various ASCII data files containing the necessary grid-point ID, frequency, damping, and mode-shape information, which can be further processed to generate files in the appropriate format for input to the STATCORR program.

Since the experimental mode data is stored on a different computer system, it was necessary to provide a method of data transfer between the Code 750 VAX-11/780 computer and the Environmental Test \& Integration Branch PDP-11/35 computer. Because rapid, convenient file transfer was desired and the two computer systems had no similar storage media to permit simple volume transfer between the machines, a remote terminal emulator program with ASCII file transfer capability was adapted for use on the PDP-11/35. This permits the PDP computer to be used as a remote (dial-up) terminal to the VAX-11/780, allowing direct transfer of ASCII text files via phone line between the VAX and PDP computers.

For a user's guide describing the execution of NASTRAN, STATCORR, and the associated preprocessing programs, please refer to NASA Technical Memorandum 86044. Also included is a working example using the SPARTAN-1 model, and FORTRAN source code listings of the STATCORR program and the preprocessing programs TESETDMI, UNPACKDMI, LAMA, and GRDPTLST.

SORT DOF LISTS 8 MODE SHAPE MATRICES (BASED ON DOF SORT)
CALL DOFSORT(IDDOFA, ICOMPA, NDOFA, DISPAN, NAN)
CALL DOFSORT (IDDOFE, ICOMPE, NDOFE, DISPAN, NAN
PARAMETER (MAXMODE= 200)
PARAMETER (MAXDOF $=1000$)
COMMON /LIMITS/ MXID, MXDF
DATA MXIM/MAXMODE/, MXDF/MAXDOF/
REAL FREQAN(MAXMODE), FREQEX (MAXMODE)
REAL DISPAN (MAXDOF , MAXMODE), DISPEX (MAXDOF, MAXMODE)
REAL MASS (MAXMODE), STIFF (MAXMODE), DAMP (MAXYODE)
REAL CORREL (MAXMODE, MAXMODE), C(MAXMODE, MAXMODE)
REAL S(MAXMODE, MAXMODE)
REAL RMSA MAXMODE, MAXMODE), RMSE(MAXMODE, MAXMODE)
REAL AVECT(MAXDOF) , EVECT (MAXDOF), D IFF (MAXDOF) , DIFABS (MAXDOF).
I NTEGER IDDOFA (MAXDOF, MAXMODE), IDDOFE (MAXDOF, MAXMODE)
I NTEGER ICOMPA (MAXDOF, MAXMODE), ICOMPE (MAXDOF, MAXMODE)
INTEGER NDOFA (MAXMODE), NDOFE (MAXMODE)
INTEGER IDDOF I (MAXDOF), ICOMP I (MAXDOF)
INTEGER NAF IT (MAXMODE), MEF IT (MAXMODE)
INTEGER ASYMM(3, MAXMODE), ESYMM (3, MAXMODE)
CHARACTER* 10 AHEADER (4), EHEADER (4), HEADER(32)
CHARACTER*9 CDATE
CHARACTER* 1 YESNO
LOGICAL PRTAN, PRTEX, LSYMM, LPRINT
COMMON /WHEN/ CDATE

DATA PRTAN, PRTEX, LSYMM, LPRINT/4*. FALSE./
DATA AIIEADER $2 *$ ' NASTRAN', $2 *$ ' TEST',
DATA EHEADER $2 *$ ' TEST', $2 *$ ' NASTRAN',
DATA HEADER' \# OF GP' 'S', ' CORREL', 2*', 2*' RMS'

* ' MAX REL', : GRID',', MODE', 'FREQUENCY',

PRINT SECTION 1 HEADER
CALL DATE (CDATE)
PRINT 8000, CDATE
PRINT 4000
CHECK FOR SEPARATE PRINT FILE
TYPE 5000
ACCEPT 7000, YESNO
IF (YESNO.EQ, 'Y') LPRINT = . TRUE.
IF (LPRINT) PRINT 5500, YESNO
GET ANALY'ICAL FREQ, MASS, STIFFNESS, MODE-SHAPE, 8 DOF LISTS CALL GETAN FREQAN, MASS, STIFF, ASYMTM, D ISPAN, NAN,

IDDOFA, ICOMPA, NDOFA, LPRINT)
GET EXPERIMENTAL FREQ, DAMP ING, MODE-SIAPE, 8 DOF LISTS *

DETERMINE SYMMETRY, MODE-SHAPE DUMP, $\%$ THRESHOLD OPDTIONS
CALL OPTIONS (LSYMM, PRTAN, PRTEX, RTHRESH, LPRINT)
PRINT INPUT SUTMARY
CALL INPSUHM NAN, FREQAN, MASS, STIFF, ASYMM, MEX, FREOEX, DAIIP, ESYTIMD

COMPUTE CORRELATION COEFFICIENTS 8 RMS VALUES FOR ALL
POSSIBLE ANALYTICAL/EXPERIMENTAL PAIRS

PROGRAM STATCORR
DO $100 \quad \mathrm{~N}=1$, NAN
DO $100 \mathrm{M}=1$, MEX
GET VECTORS TO BE COMPARED 8 THEIR DOF INTERSECTION SET
CALL GETVEC(DISPAN($1, N$), IDOFA(N), AVECT)
CALL GETVEC(DISPEX (1, M), NDOFE(M) , EVECT)
CALL INTERSECT (AVECT, EVECT, IDDOFA(1, N), IDDOFE(1, M) ,
ICOMPA(1, N) , ICOMPE ($1, \mathrm{M}$) ,
NDOFA(N), NDOFE (M), IDDOF I , ICOMPI , NDOFI ,
ASYMM ($1, N$) , ESYMM (1, M) , LSYMM)
COMPUTE CORR COEFFS 8 RMS VALUES FOR THIS PAIR
CALL CORRMS (AVECT, EVECT, NDOFI, CORREL(N, M) ,
$\mathbf{C}(N, M), S(N, M), \operatorname{RMSA}(N, M), \operatorname{RMSE}(N, M))$
CONTINUE
PRINT CORPELATION COEFFICIENT TABLE
CALL CORRTBL (CORREL, NAN, MEX)
DETERMINE BEST MATCH FOR EACH EXPERIMENTAL 8 ANALYTICAL MODE
CALL MATCH(CORREL, NAN, MEX, NAF IT, MEF IT)
FOR EACH MATCHED PAIR, GET X/RMS DIFFERENCES 8 PRINT SUMMARY
PRINT ANALYTICAL MODE SHAPE HEADER
PRINT 8000, CDATE
PRINT 1000, AHEADER, HEADER
DO $200 \mathrm{~N}=1$, NAN
$M=$ NAFIT(N)
GET VECTORS TO BE COMPARED 8 THEIR DOF INTERSECTION SET
CALL GETVEC(DISPAN ($1, N$), NDOFA(N), AVECT)
CALL GETVEC (DISPEX ($1, \mathrm{M}$) , NDOFE (M) , EVECT)
CALL INTERSECT (AVECT, EVECT, IDDOFA(1, N), IDDOFE($1, M)$,
ICOMPA($1, N$), ICOMPE ($1, \mathrm{M}$),
NDOFA(N), NDOFE (M) , IDDOF I , ICOMP I , NDOF I ,
ASYMM (1, N) , ESYMM (1, H) , LSYMM)
CALCULATE INDIVIDUAL DIFFERENCES
CALL RMSD IFF (AVECT, EVECT, NDOF I , RMSA (N, M) , RMSE (N, M) ,
CORREL (N, M, $S(N, M), D I F F, D I F A B S)$
PRINT SUMMARY FOR THIS PAIR, WITH MAX DIFF $8>$ THRESHOLD
CALL PRINT(N, FREQAN(N), M, FREQEX(M) , NDOF I , CORREL (N, M) ,
$C(N, M), S(N, M), R M S A(N, M), R M S E(N, M)$.
DIFF, DIFABS , IDDOF I , ICONP I , RTHRESH)
CONTINUE
PRINT EXPERIMENTAL MODE SHAPE HEADER
PRINT 8000, CDATE
PRINT 3000, EHEADER, HEADER
DO 300 M= 1, MEX
$N=$ MEFIT(M)
GET VECTORS TO BE COMPARED 8 THEIR DOF INTERSECTION SET
CALL GETVEC(DISPEX (1, M) , NDOFE (M) , EVECT)
CALL GETVEC(DISPAN ($1, N$), NDOFA(N) , AVECT)
CALL INTERSECT (AVECT, EVECT, IDDOFA(1, IN), IDDOFE (1, M) ,
ICOMPA ($1, N$), I COMPE ($1, M)$,
NDOFA(N), NDOFE(M) , IDDOFI, I COMPI , NDOFI,
ASYMM ($1, \mathrm{~N}$) , ESYMIM $1, \mathrm{H}$, LSYMM)
CALCULATE COMBINED RMS AND INDIVIDUAL DIFFERENCES
CALL RMSDIFF (AVECT, EVECT, NDOFI , RMSA (N, M) , RMSE (N, MD ,
CORREL (N, M) , S(N, M) , DIFF, DIFABS)
PRINT SUMMARY FOR THIS PAIR, WITH MAX DIFF $8>$ THRESHOLD
CALL PRINT M, FREOEX(M) , N, FREQAN(N), NDOFI, CORREL(N, M) ,
$C(N, M), S(N, M), \operatorname{RMSA}(N, M), \operatorname{RMSE}(N, M)$,
DIFF, DIFABS, IDDOFI, ICOMPI, RTHRESH)
CONTINUE
PRINT ANALYTICAL 8/OR EXPERIMENTAL MODE-SHAPE VECTORS
CALL PRINTPHI (NAN, NDOFA, IDDOFA, ICOMPA, DISPAN, PRTAN,
MEX, NDOFE, IDDOFE, ICOMPE, DISPEX, PRTEX)

```
    STOP 'FORTRAN STOP -- PROCESSING COMPLETED'
C
1000 FORMAT( 1H0,'4. ANALYTICAL MODE SHAPES AND THEIR BEST',
    * EXPERIMENTAL MATCHES:',''0',12(A10,1X),2(/12(1X,A10)))
3000 FORMAT( 1HO,'5. EXPERIMENTAL MODE SHAPES AND THEIR BEST'
    * ' ANALYTICAL MATCHES:',''0',12(A10,1X),2(/12(1X,A10)))
4000 FORMAT( 1H0,' 1. INTERACTIVE DIALOG:')
5000 FORMAT( /,', IS A SEPARATE OUTPUT LISTING FILE TO BE PRINTED?',
    * , (Y OR N):, ©)
5500 FORMAT( /,', IS A SEPARATE OUTPUT LISTING FILE TO BE PRINTED?',
    * (Y OR N): , A1)
7000 FORMAT(A1)
8000 FORMAT( 1H1,'NASTRAN MODAL ANALYSIS - MODAL SURVEY STATISTICAL',
    * ' CORRELATION', /1X,A9)
    END
```

SUBROUTINE CORRMS(AVECT, EVECT, NDOF I, CORREL, CA, S, RMSA, RMSE)

IF (VARAE . NE. 0.0) CORREL = VARAE/SORT(VARA*VARE) COMPUTE CORREL COEFF (REFERENCED TO ANALYTICAL VECTOR)

IF (VARA . NE. 0.0) CA = VARAE/VARA
COMPUTE ROOT OF MEAN SQUARE DIFFERENCE
$\mathbf{S}=\mathbf{S Q R T}(\mathrm{ABS}(V A R E-C A * C A * V A R A) / N D O F I)$
COMPUTE RMS VALUES
NOTE: FOR THIS APPLICATION, RMS = STD.DEV. = SQRT(VARIANCE).
RMSA = SQRT (VARA/NDOFI)
RMSE $=$ SQRT(VARE $/$ NDOFI)

RETURN

END

```
    SUBROUTINE CORRTBL(CORREL, NAN, MEX)
C
C PRINT AN NAN X MEX TABLE OF THE ANALYTICAL VS. EXPERIMENTAL
C
    CORRELATION COEFFICIENTS.
    COMMON /LIMITS/ MAXMODE,MAXDOF
    COMMON /WHEN/ CDATE
    REAL CORREL (MAXMODE, MAXMODE)
    CHARACTER CDATE*9
C
C
200
1000 FORMAT( 1H1,'NASTRAN MODAL ANALYSIS - MODAL SURVEY STATISTICAL ',
    * 'CORRELATION', /1X,A9,
    * /1H0,'3. CORRELATION COEFFICIENTS FOR ANALYTICAL VS.',
    * 'EXPERIMENTAL COMPARISONS:')
2000 FORMAT('@ANALYTICAL', 24X,'EXPERIMENTAL MODES')
3000 FORMAT( 3X,' MODES',3X, I5, 15 I7)
4000 FORMAT( 1X, I6,4X, 16(1X,F6.3))
    END
```

```
SUBROUTINE DOFSORT(IDDOF, ICOMP,NDOF,DISP,NMODES)
```

```
PUT DOF LIST FOR EACH MODE INTO ASCENDING SORT, AND SLAVE-SORT THE CORRESPONDING MODE-SHAPE VECTORS.
COMMON /LIMITS/ MAXMODE, MAXDOF
REAL DISP (MAXDOF, MAXMODE)
INTEGER IDDOF (MAXDOF , MAXMODE), ICOMP (MAXDOF , MAXYODE) , NDOF ( MAXMODE)
DO \(200 \mathrm{~J}=1\), NMODES
IF (NDOF(J) .EQ. 1) GOTO 260
D0 \(100 \quad I=1, \operatorname{MDOF}(\mathrm{~J})-1\)
D0 \(100 \mathrm{~K}=\mathrm{I}+1\), \(\operatorname{NDOF}(\mathrm{J})\)
IF (IDDOF (K, J) .LT. IDDOF (I, J)) THEN
CALL SWAP ( IDDOF(I,J), IDDOF(K,J) ) CALL SWAP ( ICOMP (I, J), ICOMP (K, J) ) CALL SWAP ( DISP(I, J), DISP(K, J) )
*
ELSE IF ( (IDDOF (K,J) .EQ. IDDOF (I, J) ) . AND. (ICOMP (K,J) .LT. ICOMP(I,J) ) AND.) THEN CALL SWAP ( IDDOF (I,J), IDDOF(K,J) ) CALL SWAP ( ICOMP (I, J), ICOMP(K,J) ) CALL SWAP ( DISP(I,J), DISP(K,J) )
END IF
CONTINUE
CONTINUE
RETURN
END
```

	SUBROUTINE GETAN (FREQS, MASS, STIFF, ASYMM; SHAPES, NMODES, * IDDOF, ICOMPA, NDOFS, LPRINT)
$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{C} \end{aligned}$	GET FREQUENCY, MASS, STIFFNESS 8 SYMIETRY VECTORS; MODE-SHAPE MATRIX; AND GRID POINT LIST.
	COMMON /LIMITS/ MAXMODE, MAXDOF
	REAL FREOS (MAXMODE), MASS (MAXMODE), STIFF (MAXMODE)
	REAL SHAPES (MAXDOF, MAXMODE)
	INTEGER ASYMM (3 , MAXMODE)
	INTEGER IDDOF (MAXDOF, MAXMODE), ICOMPA (MAXDOF, MAXMODE)
	INTEGER NDOFS (MAXMODE)
	CHARACTER*35 FRQFIL, SHPFIL, DOFFIL
	CHARACTER*8 FROMTX, SHPMTX
	LOGICAL LPRINT
C	
${ }_{10}^{\text {C }}$	GET FILE Names
	TYPE 1000
	ACCEPT 2000, FRQFIL
	OPEN (UNIT $=1$, NAME = FRQF IL, TYPE= OLD', READONLY, ERR= 10)
	IF (LPRINT) PRINT 1500, FROFIL
20	TYPE 3000
	ACCEPT 2000, SHPFIL
	OPEN(UN IT $=2$, NAME= SHPF IL, TYPE= ' OLD', READONLY, ERR=20)
	IF (LPRINT) PRINT 3500, SHPFIL
30	TYPE 4000
	ACCEPT 2000, DOFFIL
	OPEN(UN IT= 3, NAME= DOFFIL, TYPE= ' OLD', READONLY, ERR=30)
	IF (LPRINT) PRINT 4500, DOFFIL ,
C	READ FREQUENCY FILE
	READ (1, 7000) FROMTX, NFREOS, NCOLS
	IF (NCOLS . NE. 6) THEN
40	TYPE 5000, FRQMTX, NCOLS
	IF (LPRINT) PRINT 5000, FROMTX, NCOLS
	CLOSE (UNIT=1)
	CLOSE (UNIT=2)
	CLOSE (UNIT=3)
	SND IF
	IF (NFREOS GT. MAKMODE) PRINT 6000, NFREOS, MAXMODE NMODES = MIN(NFREOS, MAXMODE)
	D0 $100 \quad \mathrm{I}=1,6$
	DO $100 \mathrm{~J}=1$, NFREQS
	IF (J.GT. MAXMODE) THEN
	READ (1,8000) DUMMY
	ELSE IF (I .EQ. 1) THEN ! GET FREQUENCY LIST
	READ (1,8000) FREOS(J)
	ELSE IF (I EQ. 2) THEN I GET MASS LIST
	READ (1,8000) MASS (J)
	ELSE IF (I . EQ. 3) THEN ! GET STIFFNESS LIST
	ELSE IF (1 , .EQ. 4) THEN : GET PLANE 1 SYMMETRY LIST
	ELSE READ (1,8000) SYMM ${ }^{\text {(}}$) GET PLANE 1 SYMMETRY LIST
	ASYMM (1, J $)=$ NINT(SYMM)
	ELSE IF (I EQ. 5) THEN I GET PLANE 2 SYMMETRY LIST
	READ (1,8000) SYMM
	ASYMM ($2, \mathrm{~J}$) $=$ NINT(SYMM)
	ELSE IF (I . EQ. 6) THEN I GET PLANE 3 SYMMETRY LIST
	HEAD (1,8000) SYMM
	ASYMMI 3, ${ }^{\text {) }}$ = NINT(SYMM)

7000
8000
9000

```
```

END IF
CONTINUE

```
```( SHOULD BE 6 COLUNS.')
```

FORMAT(' **** WARNING: FREQUENCY VECTOR HAS , I3,' ENTRIES.'

```
FORMAT(' **** WARNING: FREQUENCY VECTOR HAS , I3,' ENTRIES.'
* /15X,'ONLY THE FIRST', I5,' WILL BE USED.')
* /15X,'ONLY THE FIRST', I5,' WILL BE USED.')
```

CONTINUE

```
CONTINUE
READ MODE-SHAPE FILE
READ MODE-SHAPE FILE
 READ(2,7000) SHPMTX, ND ISPS, NSHAPES
 READ(2,7000) SHPMTX, ND ISPS, NSHAPES
 IF (NSHAPES . NE. NFREOS) THEN
 IF (NSHAPES . NE. NFREOS) THEN
 NMODES = MIN(NFREQS, NSHAPES, NMODES)
 NMODES = MIN(NFREQS, NSHAPES, NMODES)
 TYPE 9000, NFREQS, NSHAPES,NMODES
 TYPE 9000, NFREQS, NSHAPES,NMODES
 IF (LPRINT) PRINT 9000, NFREOS,NSHAPES,NMODES
 IF (LPRINT) PRINT 9000, NFREOS,NSHAPES,NMODES
 END IF
 END IF
 IF (NDISPS .GT. MAXDOF) PRINT 10000, NDISPS,MAXDOF
 IF (NDISPS .GT. MAXDOF) PRINT 10000, NDISPS,MAXDOF
 DO 200 J=1,NMODES
 DO 200 J=1,NMODES
 D0 200 I=1,NDISPS
 D0 200 I=1,NDISPS
 IF (I .LE. MAXDOF) READ(2,8000) SHAPES(I,J)
 IF (I .LE. MAXDOF) READ(2,8000) SHAPES(I,J)
 IF (I .GT. MAXDOF) READ(2,8000) DUMMY
 IF (I .GT. MAXDOF) READ(2,8000) DUMMY
 CONTINUE
 CONTINUE
 READ DOF ID FILE
 READ DOF ID FILE
 NDOFS(1) = 0
 NDOFS(1) = 0
 D0 300 I=1,1000000
 D0 300 I=1,1000000
 IF (I .LE. MAXDOF)
 IF (I .LE. MAXDOF)
 READ(3, i 1000, END=350) IDDOF(I, 1), ICOMPA(I, 1)
 READ(3, i 1000, END=350) IDDOF(I, 1), ICOMPA(I, 1)
 IF (I .GT. MAXDOF) READ(3,11000,END=350) IDUMMY, IDUNMC
 IF (I .GT. MAXDOF) READ(3,11000,END=350) IDUMMY, IDUNMC
 NDOFS(1) = NDOFS(1) + 1
 NDOFS(1) = NDOFS(1) + 1
 CONTINUE
 CONTINUE
 IF (NDOFS(1) .NE. NDISPS) THEN
 IF (NDOFS(1) .NE. NDISPS) THEN
 TYPE 12000, NDISPS,NDOFS(1)
 TYPE 12000, NDISPS,NDOFS(1)
 IF (LPRINT) PRINT 12000, NDISPS,NDOFS(1)
 IF (LPRINT) PRINT 12000, NDISPS,NDOFS(1)
 CLOSE(UNIT=1)
 CLOSE(UNIT=1)
 CLOSE(UNIT=2)
 CLOSE(UNIT=2)
 CLOSE(UNIT=3)
 CLOSE(UNIT=3)
 STOP
 STOP
 ENDIF
 ENDIF
 NDOFS(1) = MIN(NDOFS(1),MAXDOF)
 NDOFS(1) = MIN(NDOFS(1),MAXDOF)
 IF (NMODES .EQ. 1) RETURN
 IF (NMODES .EQ. 1) RETURN
 DO 500 J=2,NMODES
 DO 500 J=2,NMODES
 NDOFS(J) = NDOFS(1)
 NDOFS(J) = NDOFS(1)
 D0 400 I= 1,NDOFS(J)
 D0 400 I= 1,NDOFS(J)
 IDDOF(I,J) = IDDOF(I, 1)
 IDDOF(I,J) = IDDOF(I, 1)
 ICOMPA(I,J) = ICOMPA(I,1)
 ICOMPA(I,J) = ICOMPA(I,1)
 CONTINUE
 CONTINUE
 CONTINUE
 CONTINUE
 CLOSE(UNIT= 1)
 CLOSE(UNIT= 1)
 CLOSE(UNIT=2)
 CLOSE(UNIT=2)
 CLOSE(UNIT=3)
 CLOSE(UNIT=3)
 RETURN
 RETURN
FORMAT(/,' ENTER ANALYTICAL LAMA MATRIX FILENAME: ,, ()
FORMAT(/,' ENTER ANALYTICAL LAMA MATRIX FILENAME: ,, ()
FORMAT(/,' ENTER ANALYTICAL LAMA MATRIX FILENAME: ',A35)
FORMAT(/,' ENTER ANALYTICAL LAMA MATRIX FILENAME: ',A35)
FORMAT(A35)
FORMAT(A35)
FORMAT(' ENTER ANALYTICAL MODE-SHAPE HATRIX FILENAME: ',$)
FORMAT(' ENTER ANALYTICAL MODE-SHAPE HATRIX FILENAME: ',$)
FORMAT(' ENTER ANALYTICAL MODE-SHAPE MATRIX FILENAME: ,,A35)
FORMAT(' ENTER ANALYTICAL MODE-SHAPE MATRIX FILENAME: ,,A35)
FORMAT(' ENTER ANALYTICAL GRID POINT LIST FILENAME: ,,S)
FORMAT(' ENTER ANALYTICAL GRID POINT LIST FILENAME: ,,S)
FORMAT(' ENTER ANALYTICAL GRID POINT LIST FILENAME: ',A35)
FORMAT(' ENTER ANALYTICAL GRID POINT LIST FILENAME: ',A35)
FORMAT(' FREQUENCY MATRIX ,,A8,' HAS ', 16,' COLUNNS.'
FORMAT(' FREQUENCY MATRIX ,,A8,' HAS ', 16,' COLUNNS.'
, SHOULD BE }6\mathrm{ COLUMIS.')
, SHOULD BE }6\mathrm{ COLUMIS.')
FORMAT(A8,2 I8)
FORMAT(A8,2 I8)
FORMAT(E16.8)
FORMAT(E16.8)
FORMAT('**** WARNING: UNEQUAL NUMBER OF FREQUENCIES AND '
FORMAT('**** WARNING: UNEQUAL NUMBER OF FREQUENCIES AND '
* 'MODE SHAPES. ',
* 'MODE SHAPES. ',
* /15K,'NUNBER OF' FREQUENCIES:', I6,
```

* /15K,'NUNBER OF' FREQUENCIES:', I6,

```
```

    * /15X,'NUMBER OF MODE SHAPES:', I6,
    10000 FORMAT('15X,'ONLY THE FIRST', I5,' WILL BE OSED, WARNING: MODE-SHAPE VECTORS HAVE ',I3,' ENTRIES.',

* /15X,'ONLY THE FIRST',I6,' WILL BE USED.';
11000 FORMAT(18,1X, II)
12000 FORMAT(' **** ERROR: UNEQUAL NUMBER OF MODE-SHAPE POINTS AND ',
    * 'D.0.F. ID''S. ',I6,' 8 ',I6)
END

```
```

    SUBROUTINE GETEXP ( FREOEX, DAYP;ESYYM, DISPEX, MEX,
    *
    IDDOFE, ICOMP, NDOFE, LPRINTS
    C
C GET EXPERIMENTAL FREQUENCY 8 DAMPING LISTS, MODE-SHAPE MATRIX,
C
AND D.0.F. LIST.
COMMON /LIMITS/ MAXMODE,MAXDOF
REAL FREQEX( MAXMODE),DAMP (MAXMODE), DISPEX( MAXDOF,MAXMODE)
REAL DUMMMY(5)
INTEGER ESYMM( 3,MAXMODE)
INTEGER IDDOFE (MAXDOF, MAXMODE) , ICOMP (MAXDOF , MAXMODE)
I NTEGER NDOFE(MAXMODE)
CHARACTER*35 MSFILE
LOGICAL LPRINT
C
C PROCESS MODE-SHAPE FILES
TYPE *,,, ! SKIP A LINE
IF (LPRINT) PRINT *,',
MEX = 0
DO 200 J=1,MAXMODE
GET NEXT EXPERIMENTAL MODE-SHAPE FILE
TYPE 1000
ACCEPT 2000, MSFILLE
IF (MSFILE .EQ. 'NONE') GOTO 250
OPEN( UNIT= 10, NAME= MSF ILE ,TYPE = 'OLD', READONLYY, ERR=10)
IF (LPRINT) PRINT 1500, MSFILE
C
C
*
GET FREQUENCY, DAMPING 8
READ( 10,*) DAMP(J)
READ(10,*) (ESYMM(K, J), K= 1, 3)
GET MODE-SHAPE DISPLACEMENTS \& D.O.F.'S
DO 100 I= 1, MAXDOF
READ(10,*, EHD= 150)
( IDDOFE(I,J),ICOMP(I,J),DISPEX(I,J)
NDOFE(J) = I
CONTINUE
PRINT 5000, MAXDOF,MAXDOF
MEX = J
CLOSE(UNIT=10)
CONTINUE
TYPE 6000, MAXMODE
IF (LPRINT) PRINT 6000, MAXMODE
IF (LPRINT . AND. (MSFILE .EQ. 'NONE')) PRINT 1500, MSFILE
IF (MEX . EQ. 0) THEN
TYPE *,' ***** ERROR: NO EXPERIMENTAL MODE-SHAPE REQUESTS'
IF (LPRINT) PRINT *,
* ' **** ERROR: NO EXPERIMENTAL MODE-SHAPE REQUESTS'
STOP
END IF
RETURN
C
1000 FORMAT(, ENTER NEXT EXPERIMENTAL MODE-SHAPE FILENAME. ',
* '("NONE" IF NO MORE) : , \$)
1500
2000
*000 FOMMAT( ABS)
5000 FORMAT(' ***** WARNING: MODE-SHAPE VECTOR HAS',I6,' OR MORE',
* (', ENTRIES.',/13X, 'ONLY THE FIRST', 16,' WILL BE USED.')
6 0 0 0
* FORMAT(, **** NO MORE EXPERIMENTAL MODE-SHAPE FILES PERMITTED.'
END

```

\begin{tabular}{|c|c|}
\hline & SUBROUTINE INPSUM NAN, FREQAN, MASS, STIFF, ASYMM,
* MEX, FREQEX, DAMP,
ESYMM) \\
\hline \multirow[t]{10}{*}{\[
\begin{aligned}
& \mathbf{C} \\
& \mathbf{C} \\
& \mathbf{C} \\
& \mathbf{C}
\end{aligned}
\]} & \\
\hline & PRINT A SUMMARY OF THE ANALYTICAL 8 EXPERIMENTAL FREQUENCIES, \\
\hline & MASS, STIFFNESS, DAMP ING, AND SYMMETRY VECTORS. \\
\hline & REAL FREQAN(*), MASS (*), STIFF(*) \\
\hline & HEAL FREQEX(*), DAMP(*) \\
\hline & INTEGER ASYMM(3,*) , ESYMM (3,*) \\
\hline & LOGICAL NOSYMA (3), YESYMA (3), NOSYME (3), YESYME (3), FIRST \\
\hline & CHARACTER CDATE*9 \\
\hline & COMMON / WHEN/ CDATE \\
\hline & DATA NOSYMA, YESYMA, NOSYME, YESYME/12*.FALSE./, FIRST/.TRUE./ \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multirow[t]{3}{*}{C} & PRINT HEADER \\
\hline & PRINT 8000, CDATE \\
\hline & PRINT 1000 \\
\hline C & PRINT ANALYTICAL SUMMARY \\
\hline C & PRINT ANALYTICAL HEADER \\
\hline & PRINT 2000 \\
\hline \multirow[t]{3}{*}{C} & PRINT SUMIMARY DATA \\
\hline & PRINT 3000, (I, FREQAY(I), MASS () , STIFF(I), \\
\hline & * (ASYMMC \(\mathrm{J}, \mathrm{I}), \mathrm{J}=1,3\)) , \(\mathrm{I}=1\), NAN) \\
\hline \multirow[t]{5}{*}{C} & CHECK FOR INCONSISTENT ANALYTICAL "UNDEFINED" SYMMETRY \\
\hline & DO 200 IAXS \(=1,3\) \\
\hline & DO 100 MODE 1 , NAN , MODE) \\
\hline & IF (ASYMM (IAXS, MODE). EQ.0) NOSYMA (IAXS) = . TRUE. \\
\hline & IF (ASYMM (\(A X S\), MODE) . NE.0) YESYMA (IAXS) = . TRUE. \\
\hline \multirow[t]{2}{*}{100} & CONTINUE \\
\hline & IF (NOSYMA IAXS) . AND. YESYMA (IAXS)) PRINT 6000, IAXS \\
\hline \multirow[t]{2}{*}{200} & CONTINUE \\
\hline & PRINT EXPERIMENTAL SUMMARY \\
\hline C & PRINT EXPERIMENTAL HEADER \\
\hline & PRINT 4000 \\
\hline C & PRINT SUMMARY DATA \\
\hline & PRINT 5000, (I, FREQEX (I) , DAMP (I), \\
\hline & * (ESYMMM \(J, I), J=1,3), I=1\), MEX \\
\hline \multirow[t]{5}{*}{C} & CHECK FOR INCONSISTENT EXPERIMENTAL "UNDEFINED" SYMIETRY \\
\hline & DO 400 IAXS \(=1,3\) \\
\hline & \\
\hline & IF (ESYMM (IAXS, MODE) . EQ.0) NOSYME (IAXS) = . TRUE. \\
\hline & IF (ESYMM IAAS, MODE) . NE.0) YESYME (IAXS) = TRUE. \\
\hline \multirow[t]{2}{*}{300} & CONTINUE \\
\hline & IF (NOSYME IAXS). AND. YESYME (IAXS)) PRINT 6000, IAXS \\
\hline \multirow[t]{9}{*}{\[
\begin{aligned}
& 400 \\
& \mathrm{C}
\end{aligned}
\]} & CONTINUE \\
\hline & CHECK FOR INCONS ISTENT ANA VS. EXP "UNDEFINED" SYMMETRY \\
\hline & D0 509 IAXS \(=1,3\) \\
\hline & IF ((NOSYMA (IAXS) . AND. YESYME (IAXS)) . OR. \\
\hline & * (YESYMA(IAXS).AND. NOSYME (IAXS)) , THEN \\
\hline & IF (FIRST) PRINT 7000 \\
\hline & FIRST = .FALSE. \\
\hline & PRINT 6000, IAXS \\
\hline & END IF \\
\hline \multirow[t]{2}{*}{500} & CONTINUE \\
\hline & RETURN \\
\hline C & \\
\hline \multirow[t]{2}{*}{1000} & FORMAT 1 H0,'2. SUMMARY OF FREQUENCY, MASS, STIFFNESS,', \\
\hline & * ' DAMP ING, § SYMMETRY: ') \\
\hline \multirow[t]{3}{*}{2000} & FORMATC //, 5X, 'ANALYTICAL MODES:' \\
\hline & * /1H0,4X, MODE ', FREQUENCY ', ' MASS \\
\hline & * \({ }^{\text {a }}\), STIFFNESS \(\boldsymbol{\prime}\), SYMMETRY \\
\hline
\end{tabular}
```

3000 * FORMAT(<NAN\rangle(/5X,I3,1X,3(1PE16.8),3X,3I3),/)')
4000 FORMAT(//,5X,'EXPERIMENTAL MODES:'
* /IHO,4X,'MODE FREQUENCY DAMPING SYMMETRY',
* /,5X,'_-_-',3(1X,'___________))
5000 FORMAT(<MEX>(/5X,I3,1X,2(1PE11.3),1X,3I3),/)
6000 FORMAT( 10X,'***WARNING: INCONSISTENT UNDEFINED SYMMETRY',
* , FOR PLANE,,I2)
7000 FORMAT(//, 5X,'ANALYTICAL VS. EXPERIMENTAL SYMMETRY:')
8000 FORMAT [ 1H1,'NASTRAN MODAL ANALYSIS - MODAL SURVEY STATISTICAL ',
* 'CORRELATION', /1X,A9)
END

```
```

    SUBROUTINE INTERSECT( AVECT, EVECT, IDDOFA, IDDOFE, ICOMPA, ICOMPE,
    *
                                    NDOFA, NDOFE, IDDOFI, ICOMPI , NDOFI , ASYMM，ESYMI，LSYMM）
    COPY INTERSECTION SET OF VECTORS IDDOFA & IDDOFE TO VECTOR
    IDDOFI. NDOFI IS THE LENGTH OF THE INTERSECTION SET.
        REDUCE AVECT & EVECT VECTORS TO CONTAIN ONLY THE CORPESPONDING
        INTERSECTION SET OF TERMS, I.A.W. THE MASTER SET IDDOFI.
        IF THE INTERSECTION SET IS NULL (NO EQUIVALENT D.O.F ID'S),
        THE VALUE RETURNED FOR NDOFI IS 0 .
        IF SYMMETRY IS TO BE CONSIDERED, AND ANALYTICAL & EXPERIMENTAL
        SYMMETRY ARE NOT THE SAME, THE VALUE RETURNED FOR NDOFI IS 0.
    REAL AVECT(*), EVECT(*)
    INTEGER IDDOFA(*),IDDOFE(*),IDDOFI(*)
    INTEGER ICOMPA(*), ICOMPE(*), ICOMP I (*)
    INTEGER ASYMM( 3), ESYMM( 3)
    LOGICAL LSYMM
    IA = 1
    IE = 1
    NDOFI = 0
    IF (LSYMM) THEN
    SYMMETRY IS TO BE CONSIDERED:
    IF A 8 E ARE UNLIKE, LEAVE INTERSECTION SET AS NULL
                IF (ASYMMM(1) .NE. ESYMMM(1)) RETURN
            IF (ASYMIM(2) .NE. ESYMM(2)) RETURN
            IF (ASYMM( 3) . NE. ESYMM( 3)) RETURN
            END IF
    C
DO 100 I= 1,NDOFA+NDOFE
IF ((IA.GT.NDOFA) .OR. (IE.GT.NDOFE)) GOTO 150
IF ( (IDDOFA(IA) .EQ. IDDOFE(IE)).AND.
* (ICOMPA(IA) .EQ. ICOMPE(IE)) ) THEN
NDOFI = NDOFI + I
IDDOFI(NDOFI) = IDDOFA(IA)
ICOMPI(NDOFI) = ICOPPA(IA)
AVECT(NDOFI) = AVECT(IA)
EVECT(NDOFI) = EVECT(IE)
IA = IA + I
IE = IE +1
ELSE IF (IDDOFA(IA) .LT. IDDOFE(IE)) THEN
IA = IA + I
ELSE IF (IDDOFE(IE) .LT. IDDOFA(IA)) THEN
IE = IE + 1
END IF
CONTINUE
RETURN
END

```

SUBROUTINE MATCH(CORREL, NAN, MEX, NAFIT, MEFIT)
COMMON /LIMITS/ MAXMODE, MAXDOF
DIMENS ION CORREL (MAXMODE, MAXMODE) , NAFIT (MAXMODE), MEF IT (MAXMODE)
DETERMINE BEST EXPERIMENTAL MODE-SHAPE MATCH (HIGHEST
CORRELATION COEFFICIENT) FOR EACH ANALYTICAL MODE-SHAPE.
D0 \(200 \mathrm{~N}=1\), NAN BEST \(=-1.0\) DO \(100 \mathrm{M}=1, \mathrm{MEX}\)

IF (ABS (CORREL (\(N, M\))) . GT. BEST) THEN BEST \(=\) ABS (CORREL \((N, M)\)) NAFIT(N) \(=M\) END IF CONTINUE CONTINUE

DETERMINE BEST ANALYTICAL MODE-SHAPE MATCH (HIGHEST CORRELATION COEFFICIENT) FOR EACH EXPERIMENTAL MODE-SHAPE.

DO \(400 \mathrm{M}=1\), MEX BEST \(=-1.0\)
DO \(300 \mathrm{~N}=1\), NAN
IF (ABS (CORREL (N, M)) .GT. BEST) THEN BEST \(=\operatorname{ABS}(\operatorname{CORREL}(N, \mathrm{MD})\) \(\operatorname{MEFIT}(\mathrm{M})=\mathrm{N}\) END IF CONTINUE
CONTINUE
RETURN
END
```

    SUBROUTINE OPTIONS( LSYMM, PRTAN, PRTEX, RTHRESH, LPRINT)
    C
DETERMINE SYMMETRY, MODE-SHAPE DUMP, \& THRESHOLD OPTIONS
LOGICAL LSYMM, PRTAN, PRTEX, LPRINT
CHARACTER*1 YESNO
C DETERMINE IF SYMMETRY IS TO BE CONSIDERED
TYPE 1000
ACCEPT 2000, YESNO
IF (YESNO .EQ. 'Y') LSYMM = .TRUE.
IF (LPRINT) PRINT 1500, YESNO
DETERMINE IF ANALYTICAL AND/OR EXPERIMENTAL MODE-SHAPE
C VECTORS ARE TO BE PRINTED
TYPE *, , ' ISKIP A,LINE
IF (LPRINT), PRINT *,',
ACCEPT 2000, YESNO
IF (YESNO .EQ. 'Y') PRTAN = .TRUE.
IF (LPRINT) PRINT 3500, 'ANALYTICAL', YESNO
TYPE 3000, 'EXPERIMENTAL'
ACCEPT 2000, YESNO
IF (YESNO .EQ. 'Y') PRTEX = .TRUE.
IF (LPRINT) PRINT 3500, 'EXPERIMENTAL', YESNO
GET RELATIVE DEVIATION THRESHOLD. DEFAULT IS 5.0%
RTHRESH = .05
TYPE 4000, RTHRESH
ACCEPT *, RTHRESH
TYPE 5000, RTHRESH
IF (LPRINT) THEN
PRINT 4500, .05, RTHRESH
PRINT 5000, RTHRESH
END IF
RETURN
C
1000 FORMAT(/, ' IS ANALYTICAL VS. EXPERIMENTAL SYMMETRY TO BE ',
* ',CONSIDERED? (Y OR N):, © )
FORMAT( /,' IS ANALYTICAL VS. EXPERIMENTAL SYMINETRY TO BE ,,
* 'CONSIDERED? (Y OR N): ,A1)
FORMAT(A1)
FORMAT(' PRINT ',A12,' MODE-SHAPE VECTORS? (Y OR N): ,,s)
FORMIAT(, PRINT ,,A12,' MODE-SHAPE VECTORS? (Y OR N): ,,A1)
FORMAT(//, RELATIVE DEVIATIONS GREATER THAN A THRESHOLD',
* " VALUE WILL BE PRINTED.'
* }\quad\mathrm{ ,', THE DEFAULT THRESHOLD IS , F6.3,
* ノ' ENTER DESIRED THRESHOLD. "," FOR DEFAULT: ', ()
4500 FORMAT(//, RELATIVE DEVIATIONS GREATIRR THAN A THRESHOLD',
* , valuE WILL BE PRINTED.,
* }\quad,\mathrm{ THE DEFAULT THFESHOLD IS , F6.3,
* /, ENTER DESIRED THRESHOLD, "," FOR DEFAULT: , F6.3)
* FORMAT('ORELATIVE DEVIATIONS GREATER THAN ,, 2PF7.2,
END

```
```

    SUBROUTINE PRINTCN1, FREQ1, N2, FREO2, NDOF; CORREL, C,S, RMSA, RMSE,
    *
                        DIFF,DIFABS, IDDOF, ICOMP, RTHRESH)
    C
PRINT CORRELATION INFORMATION FOR MODES N1,N2 COMPARISON
DIMENSION DIFF(*),DIFABS(*),IDDOF(*), ICOMP(*)
DIMENSION ID(30000)
C DETERMINE MAXIMUM DIFFERENCE \& DIFFS > THRESHOLD
DIFMAX = 0.0
IDMAX = 0
NDIFF = 0
IF (NDOF .GT. 0) THEN
DIFMAX = ABS(DIFF(1))
IDMAX = IDDOF(1)
DO 100 N=1,NDOF
IF (ABS(DIFF(N)) .GT. DIFMAX) THEN
DIFMAX = ABS(DIFF(N))
IDMAX = IDDOF(N)
END IF
IF (ABS(DIFF(N)) .GT. RTHRESH) THEN
NDIFF = NDIFF +
ID(NDIFF) = N
END IF
CONTINUE
END IF
C
PRINT SUMMARY LINE FOR THIS MATCHED PAIR
PRINT 1000, N1,FREQ1, N2, FREQ2, NDOF, CORREL, C,S,
RMSA, RMSE, DIFMAX, IDMAX
*
IF (NDOF .EQ. O) RETURN
C
PRINT ALL DIFFS > THRESHOLD , DEFAULT IS 5%
IF (NDIFF .GT. 6) THEN
PRINT 2000, RTHRESH,(IDDOF(ID(N)), ICOMP(ID(N)),
PRINT 3000, (IDDOF(ID(N)), ICOMP(ID(N)), DIFABS(ID(N)),
N=1,NDIFF)
END IF
RETURN
C
1000 FORMAT('0', 16,2(F15.6,I7),4X,F9.3,2X,5(1PE11.3), I9)
2000 FORMAT(21X,'RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > ',
* 2PF7.2,'% : (GRID ID/DEVIATION)',
* 20(/21X,5(19,'-,,I1,',足,1PE10.3);)
3000 FORMAT(21X,'SCALED DIFFERENCES ( (XA-XE)/S ) > THRESHOLD :',
* , (GRID ID/DIFFERENCE)'
* 20(/21X,5(I9,'-',I1,'/',1PE10.3)))
END

```
```

    SUBROUTINE PRINTPHI (NAN,NDOFA, IDDOFA, ICOMPA,DISPAN, PRTAN,
    *
                                    MEX, NDOFE, IDDOFE, ICOMPE,D ISPEX, PRTEX)
    C
COMMON /LIMITS/ MAXMODE,MAXDOF
COMMON /WHEN/ CDATE
REAL DISPAN(MAXDOF, MAXMODE),DISPEX(MAXDOF,MAXMODE)
INTEGER IDDOFA(MAXDOF, MAXMODE), IDDOFE(MAXDOF, MAXMODE)
INTEGER ICOMPA(MAXDOF, MAXMODE), ICOMPE (MAXDOF, MAXMODE)
INTEGER NDOFA( MAXMODE), NDOFE(MAXMODE)
LOGICAL PRTAN, PRTEX
CHARACTER CDATE*9
C
C IF (PRTAN) THEN I PRINT ANALYTICAL MODE-SHAPE VECTORS
C PRINT HEADER
PRINT 5000, CDATE
PRINT 1000
C PRINT ALL VECTORS
DO 100 I=1,NAN
PRINT 2000, I,(IDDOFA(J,I), ICOMPA(J,I),DISPAN(J,I),
* J=1,NDOFA(I))
END IF
C
C IF (PRTEX) THEN I PRINT EXPERIMENTAL MODE-SHAPE VECTORS
C PRINT HEADER
PRINT 5000, CDATE
PRINT 3000,
C PRINT ALL VECTORS
DO 200 I= 1,MEX
PRINT 4000, I,(IDDOFE(J,I), ICOMPE(J,I),DISPEX(J,I),
*
J=1,NDOFE(I) )
CONTINUE
END IF
RETURN
C
1000 FORMAT( 1H0,'6. ANALYTICAL MODE-SHAPE VECTORS ',
* '(GRID PT/DISPLACEMENT)')
2000 FORMATC 1H0, 'ANALYTICAL MODE', I4,
* 200(/5X,5(19,'-',11,'/',1PE10.3)))
3000 FORMAT 1H0,'7. EXPERIMENTAL MODE-SHAPE VECTORS ',
* '(GRID PT/DISPLACEMENT)')
4000 FORMAT 1HO, ' EXPERIMENTAL MODE', IA,
* 200(/5X,5(19,'-',I1,',',1PE10.3)))
5000 FORMAT 1H1,'NASTRAN MODAL ANALYSIS - MODAL SURVEY STATISTICAL ',
* 'CORRELATION', /1X,A9)
END

```
```

C
IF (NDOFI .EQ. 0) RETURN
DO 100 I= 1,NDOFI
IF (CORREL .GE. 0.0) THEN
DIFF(I) =0.0
IF ( (RMSA .NE. 0.0) .AND. (RMSE .NE. 0.0) )
DIFF(I) = AVECT(I)/RMSA - EVECT(I)/RMSE
DIFABS(I) = 0.0
IF (S .NE. 0.0)
DIFABS(I) = (AVECT(I) - EVECT(I)) / S
ELSE IF (CORREL .LT. 0.0) THEN
CORRECT FOR 180-DEGREE PHASE SHIFT
DIFF(I) =0.0
IF ( (RMSA .NE. 0.0) .AND. (RMSE .NE. 0.0) )
DIFF(I) = AVECT(I)/RMSA + EVECT(I)/RMSE
DIFABS(I) = 0.0
IF (S .NE. 0.0)
DIFABS}(I)=(\operatorname{AVECT}(I) + EVECT(I))/
END IF
CONTINUE
RETURN
END

```

SUBROUTINE SWAP(I,J)
INTERCHANGE THE VALUES IN TWO 4-BYTE VARIABLES
ITEMP \(=\) I
\(\mathbf{I}=\mathbf{J}\)
\(J=I T E M P\)
RETURN
END
READING CORRELATION RESULTS
The printed output lloting generatod by interactive execution of tho atatiatical correlation program STATCORA contalins oven functlonalif-dofinod eoctlone. Boctlonal 6 end 7 are optionally requested by the ueer

Gection 2 providoe oummert which describen tho aniytic and experimental moden bolng compared, including frequency,

 corrolation coefficionte orro ©ompared. © oorroletion cooffictent to bo calculatod, but from a practical etandpoint thic io

 rather than being oaloninted.
Soction 4 obome oumery of the orrointion ronulte for the malyiteal modoo. For oach anaiytical modo, the experlmental

 froquencion corroapond to thone roportod in bocition 2 . Etatiotical datereportod in thie row.

rid poimt mi mhich thlo ocourr.

 the samoe ymotry paramotory in the row correaponding to thet analytical mode.

\footnotetext{

 expoguncy, wimice
}

LAMA
The table of modal frequencies, masses, and stiffnesses output from NASTRAN are converted by processer program LAMA from table format to matrix format to satisfy the input needs of STATCORR. LAMA operates interactively and prompts the user for the input file name and the output file name.

\begin{tabular}{|c|c|c|}
\hline 100 & \multirow{7}{*}{C} & PROGRAM LAMATABLE \\
\hline 200 & & \\
\hline 300 & & PARAMETER (MAXEIG \(=300\)) \\
\hline 400 & & \\
\hline 500 & & CHARACTER LAMA*8 \\
\hline 600 & & REAL FREQ (MAXEIG) , GMASS (MAXEIG), STIFF(MAXE IG) , SYMMI 3) \\
\hline 700 & & REAL REC2(\(7 *\) MAXEIG) \\
\hline 800 & C & \\
\hline 900 & & \\
\hline 1000 & C & \\
\hline 1100 & C & POSITION PUNCH FILE TO 1ST CARD OF RECORD 2 OF LAMA TABLE \\
\hline 1200 & & CALL FINDREC2(LUN_P, LAMA) \\
\hline 1300 & C & READ RECORD 2 OF LAMA TABLE INTO ARRAY REC2 \\
\hline 1400 & & CALL READREC2 (REC2, NVALUES, LUN_P, MAXEIG) \\
\hline 1500 & C & EXTRACT FREQUENCY, MASS, 8 STIFFNESS VECTORS FROM REC2 \\
\hline 1600 & & NEIGENS = NVALUES \(/ 7\) \% \\
\hline 1700 & & D0 \(100 \mathrm{I}=1\), NEIGENS \\
\hline 1800 & & FREQ(1) \(=\) REC2(\(7 *\) I-2) \\
\hline 1900 & & GMASS (1\()=\operatorname{REC2}(7 * \mathrm{I}-1)\) \\
\hline 2000 & & STIFF(I) \(=\) REC2(7*I) \\
\hline 2100 & 100 & CONTINUE \\
\hline 2200 & C & DO ASCENDING SORT OF FREQ VECTOR; SLAVE SORT MASS 8 STIFF VECTORS \\
\hline 2300 & & CALL SORT (NEIGENS, FREQ, GMASS, STIFF) \\
\hline 2400 & C & CHECK PUNCH FILE FOR SYMMETRY PARAMETERS \\
\hline 2500 & & CALL READSYM (SYMM, LUN_P) \\
\hline 2600 & C & CLOSE PUNCH FILE \\
\hline 2700 & & CLOSE (UN IT \(=\) LUN_P) \\
\hline 2800 & C & WRITE MATRIX FILE \\
\hline 2900 & & CALL WRITEMTX (NEIGENS, FREQ, GMASS, STIFF, SYMM, LUN_M, LAMA) \\
\hline 3000 & & STOP \\
\hline 3100 & & END \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 100 & & SUBROUTINE FITDREC2(LUN-P,LAMA) \\
\hline 200 & C & PFILE*80, LAMA*8, LINE*80 \\
\hline 300 & & CHARACTER PFILE*80, LAMA*B,LINL \\
\hline 400 & \({ }_{\text {C }}\) & OPEN PUNCH FILE \\
\hline 500
600 & C
10 & OPE TYPE 1000, \({ }^{\text {, ENTER }}\) INPUT PUNCH FILE NAME: \\
\hline 700 & & \\
\hline 806 & & OPEN UNIT \(=\) LUN_P, NAME - PFILE, TMP \\
\hline 900 & C & POSITION FILE TO 1000 , enter name of lama table: \\
\hline 1000 & & ACCEPT 3000, LAMA \\
\hline 1100
1200 & & DO \(100 \mathrm{I}=1,1000000\) \\
\hline 1200 & & READ (LUN-P, 2000, END=125), LINE (LINE(9:16). EQ. LAMA)) \\
\hline 1400 & & \\
\hline 1500 & & G0TO 150 It LAMA TABLE HOUN \\
\hline 1600 & 100 & TABLE NOT FOUND; START OVER \\
\hline 1700 & C & TABLE NOT \({ }^{\text {TYPE }}\), ***** LAMA TABLE NOT FOUND* \\
\hline 1800 & 125 & CLOSE (UNIT \(=\) LUN_P) \\
\hline 2000 & & GOTO 10 , \\
\hline 2100 & C & POSITION PUNCE FILE TO RECON \\
\hline 2200 & 150 & DO 200 I \(=1,1600000\), END=225) LINE (\(1: 24\)), IREC \\
\hline 2300 & & \\
\hline 2400 & & IF (AND. (IREC.EQ.2) GOTO 250 I! RECORD 2 FOUND \\
\hline 2500 & & CONTINUE \\
\hline 2600 & 200 & RECORD 2 NOT FOUND; START OVER \\
\hline 2700
2800 & \(\stackrel{C}{\text { C }}\) & TECORPE \(*\), \({ }^{* * * *}\) RECORD 2 OF LAMA TABLE NOT FOUND \\
\hline 2900 & & CLOSE (UNIT \(=\) LUN_P) \\
\hline 3000 & & GOTO 10 TO REREAD IST CARD OF RECORD 2 \\
\hline 3100 & C & POSITION FILE TO REREAD IST CAW \\
\hline 3200 & 250 & BACKSPACE LUN-P \\
\hline 3300 & & RETUR \\
\hline 3400 & C & FORMAT(1X, A30, 1X, \({ }^{\text {) }}\) \\
\hline 3500 & 1000 & FORMAT (A80) \\
\hline 3700 & 3000 & FORMAT (AB) \\
\hline 3800 & 4000 & FORMAT A24, 116) \\
\hline 3900 & & END \\
\hline
\end{tabular}
```

        C SUBROUTINE READREC2(IREC2,NVALUES,LUN_P,MAXEIG)
        INTEGER IREC2(7*MAXEIG), ITEMP(4)
        CHARACTER*6 CTEMP(4)
    C
        READ 1ST CARD OF LAMA TABLE RECORD 2
            READ(LUN_P, 1000) IREC2(1), IREC2(2)
            NVALUES = 2
        READ REMAINING CARDS UNTIL 'ENDREC' FOUND
        DO 200 I=1,1000000
            MEAD(LUN_P,2000, END=225) (CTEMP(J),ITTEMP(J); J= 1,4)
            D0 100 J=1,4
                IF (CTEMP(J) . EQ. 'ENDREC') GOTO 250
                NVALUES = NVALUES + 1-
                IREC2(NVALUES) = ITEMP(J)
                IF (CTEMP(J)(6:6) .EQ.,_,)
                                    IREC2(NVALUES) = - IREC2(NVALUES)
                                    IF (NVALUES .EQ. 7*MAXEIG) GOTO 2^5
                CONTINUE
            CONTINUE
        END OF RECORD 2 OF LAMA TABLE NOT FOUND
            TYPE 3000, NVALUES
                            PAUSE 'TYPE "CONTINUE" OR "STOP",
            CHECK TO SEE IF % CONTINUE" OR "STOP"*
            IF ( MOD(NVALUES, 7).NE, 0) ENTRIES IS DIVISIBLE BY }
            RETURN
    FORMAT( 40X, 2I 16)
    FORMAT( 8X, 4(A6, I 10))
    FORMAT( 1X,'*** WARNING: END OF RECORD 2 NOT REACHED.,
    4000 FORMAT( 1X,'*** WARNING: NUMBER OF ENTRIES READ: ', I4)
* , NOT DIVISIBLE BY 7',

```
\begin{tabular}{|c|c|c|}
\hline 100 & & SUBROUTINE READSYM (SYMM, LON_P) \\
\hline 200 & C & \\
\hline 300 & & CHARACTER*80 RECORD \\
\hline 400 & & REAL SYMM (3) \\
\hline 500 & & LOGICAL LSYM1,LSYM2,LSYM3 \\
\hline 600 & C & \\
\hline 700 & & REWIND LUN_P ISTART SEARCH FROM TOP OF FILE \\
\hline 800 & C & SET SYMMETRY DEFAULTS \\
\hline 900 & & SYMM (1) \(=0.0\) \\
\hline 1000 & & SYMH(2) \(=0.0\) \\
\hline 1100 & & SYMM(3) \(=0.0\) \\
\hline 1200 & C & SEARCH PUNCH FILE FOR SYMMETRY DEFINITION RECORDS \\
\hline 1300 & & D0 \(100 \mathrm{I}=1,1000000\) \\
\hline 1400 & & READ (LUN_P, 1000, END \(=150\)) RECORD \\
\hline 1500 & & IF (\(E E C O R D(21: 28) . E Q . ~ ' S Y M I P L A N ') ~ T H E N ~\) \\
\hline 1600 & & LSYM1 = .TRUE. \\
\hline 1700 & & DECODE (\(2,2000, \operatorname{RECORD}(47: 48)\)) SYMM (1) \\
\hline 1800 & & TYPE *, 'PLANE 1 SYMPETRY:', SYMM (1) \\
\hline 1900 & & ELSE IF (RECORD(21:28) .EQ. 'SYYI2PLAN') THEN \\
\hline 2000 & & LSYHI2 \(=\). TRUE. \\
\hline 2100 & & DECODE (2,2000, \(\operatorname{HECORD}(47: 48)\)) SYMM (2) \\
\hline 2200 & & TYPE *, 'PLANE 2 SYMMETRY:', SYMM (2) \\
\hline 2300 & & ELSE IF (\(\mathrm{ELCORD}(21: 28\)) . EQ. 'SYMBPLAN') THET \\
\hline 2400 & & LSYM3 = . TRUE. \\
\hline 2500 & & \(\operatorname{DECODE}(2,2000, \mathrm{RECORD}(47: 48)\)) SYMM (3) \\
\hline 2600 & & TYPE *, 'PLANE 3 SYMINETRY:', SYNIM (3) \\
\hline 2700 & & END IF \\
\hline 2800 & 100 & CONTINUE \\
\hline 2900 & C & REPORT NON-DEF INED SYMMETRY \\
\hline 3000 & 150 & IF (.NOT. LSYM1) TYPE 3000, '1' \\
\hline 3100 & & IF (.NOT. LSYMZ) TYPE 3000, '2' \\
\hline 3200 & & IF (.NOT. LSYM3) TYPE 3000, '3' \\
\hline 3300 & & RETURN \\
\hline 3400 & C & \\
\hline 3500 & 1000 & FORMAT(AB6) \\
\hline 3600 & 2000 & FORMAT (F2.0) \\
\hline 3700 & 3000 & FORMAT(1X, 'PLANE ', A1, SYMMETRY NOT SPECIFIED') \\
\hline 3800 & & END \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 100 & & \multirow[t]{2}{*}{SUBROUTINE SORT (N, FREQ, GMASS, STIFF)} \\
\hline 200 & C & \\
\hline 300 & & REAL FREQ(N), GMASS (N) , STIFF(N) \\
\hline 400 & C & \\
\hline 500 & C & \multirow[t]{2}{*}{PEFFORM ASCEND ING SORT OF FREQ VECTOR} \\
\hline 603 & C & \\
\hline 700 & C & \\
\hline 800 & & IF (N . EQ. 1) RETURN \\
\hline 900 & C & \\
\hline 1000 & & DO \(100 \mathrm{I}=1, \mathrm{~N}-1\) \\
\hline 1100 & & DO \(100 \mathrm{~K}=\mathrm{I}+1, \mathrm{~N}\) \\
\hline 1200 & & IF (FREQ(K). LT, FREQ(I)) THEN \\
\hline 1300 & & TEMP \(=\) FREQ (\()\) \\
\hline 1400 & & FREQ(I) = FREQ(K) \\
\hline 1500 & & FREQ(K) = TEMP \\
\hline 1600 & & TEMP \(=\) GMASS (I) \\
\hline 1700 & & GMASS (I) \(=\) GMASS(K \\
\hline 1800 & & GMASS (K) = TEMP \\
\hline 1900 & & TEMP = STIFF(I) \\
\hline 2000 & & STIFF(I) = STIFF(K) \\
\hline 2100 & & STIFF(K) = TEMP \\
\hline 2200 & & END IF \\
\hline 2300 & 100 & CONTINUE \\
\hline 2400 & & RETURN \\
\hline 2500 & & END \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 100 & \multirow{4}{*}{C} & SUBROUTINE WRITEMTX(\({ }^{\text {, FFREQ, GMASS, STIFF, SYMM, LUN_M, LAMA) }}\) \\
\hline 200 & & \\
\hline 300 & & \\
\hline 400 & & REAL FREQ (N), GMASS (N), STIFF(N), SYMM(3) \\
\hline 500 & C & \\
\hline 600 & C & OPEN MATRIX FILE , ENTER OUTPUT MATRIX FILENAME: \\
\hline 700
800 & & TYPE 1000, 'ENTER OUTPUT MATRIX FILENAME: ACCEPT 2000, MFILE \\
\hline 900 & & OPEN (UNIT \(=\) LUN-M, NAME \(=\) MF ILE, TYPE= ' NEW', \\
\hline 1000 & & CARRI AGECONTROL= 'LIST') \\
\hline 1100 & C & WRITE MATRIX FILE HEADER \\
\hline 1200 & & IROWS \(=\mathrm{N}\) \\
\hline 1300 & & JCOLS \(=6\) \\
\hline 1400 & & WRITE(LUN_M, 3000) LAMA, IROWS, JCOLS \\
\hline 1500 & C & WRITE VECTORS AS THREE COLUMNS OF MATRIX \\
\hline 1600 & & WRITE(LUN-M, 4006) FREQ I! COLUMN \\
\hline 1700 & & WRITE (LUN-M, 4000) GMASS ! COLUMN 2 \\
\hline 1800 & & WRITE(LUN-M, 4000) STIFF It COLUMN E OLINN \\
\hline 1900 & & WRITE(LUN_M, 4000) (SYMM (1), \(\mathrm{I}=1, \mathrm{~N}\)) \\
\hline 2000 & & WRITE LUN_M, 4000) (SYMM (2), \(1=1, N\)) \\
\hline 2100 & & WRITE(LUN_M, 4000) (SYMM (3), \(1=1, N\)) COLUN \\
\hline 2200 & & CLOSE(UNIT \(=\) LUN_M \\
\hline 2300 & & RETURN \\
\hline 2400 & C & \\
\hline 2500 & 1000 & FORMAT(1X, A30, 1X, 8) \\
\hline 2600 & 2000 & FORIAT (A40) \\
\hline 2700 & 3000 & FORMAT (A8,218) \\
\hline 2800 & 4000 & FORMAT(1PE16.8) \\
\hline 2900 & & END \\
\hline
\end{tabular}

\section*{UNPACKDMI}

The data blocks of mode shapes and component degrees of freedom as output from NASTRAN are in a special format called DMI. This format is not acceptable to STATCORR, so these data must be reformatted. The pre-processor program UNPACKDMI is used to take modes and freedoms out of DMI format. The output of the modes from this program will be in final form for STATCORR. The output of freedoms will need further processing by another pre-processor. UNPACKDMI operates interactively and prompts the user for responses.

\begin{tabular}{|c|c|c|}
\hline 100 & & SUBROUTINE FNDMTX(MATNAM, NROWS, NCOLS, CONTID, LUN, ALL , EOF) \\
\hline 200 & & CHARACTER MATNAM*8, RECORD*80, FLD 1 T03*24, CONTID*3 \\
\hline 300 & & LOGICAL ALL, EOF \\
\hline 400 & C & \\
\hline 500 & & IF (NOT. ALL) THEN \\
\hline 600 & & REWIND LUN \\
\hline 700 & & EOF \(=\). FALSE. \\
\hline 800 & & END IF \\
\hline 900 & C & \\
\hline 1000 & C & SEARCH FOR DES IRED MATRIX \({ }^{\text {c }}\) (/MATNAM/, \\
\hline 1100 & & FLD1T03 \(=\) ' DMI \\
\hline 1200 & & DO \(100 \quad \mathrm{I}=1,1000000\) \\
\hline 1300 & & READ (LUN, 1000, END= 199) RECORD \\
\hline 1400 & & IF (ALL) FLD1T03 (9:16) = RECORD (9:16) \\
\hline 1500 & & IF (RECORD (1:24) , EQ. FLD 1 (T03) THEN \\
\hline 1600 & & IF (ALL) MATNAM \(=\) RECORD (9:16) \\
\hline 1700 & & READ (RECORD, 2000) MROWS, NCOLS, CONTID \\
\hline 1800 & & CONTID (1:1) \(=\) '*' \\
\hline 1900 & & GOTO 150 \\
\hline 2000 & & ENDIF \\
\hline 2100 & 100 & CONTINUE \\
\hline 2200 & 150 & RETURN \\
\hline 2300 & C & \\
\hline 2400 & C & END OF FILE; NEXT MATRIX NOT FOUND \\
\hline 2500 & 199 & EOF = . TRUE. \\
\hline 2600 & & \\
\hline 2700 & & IF (. NOT. ALL) TYPE *, MATNAM, MATRIX HEADER GARW NOT FOUND \\
\hline 2800 & & RETURN \\
\hline 2900 & C & \\
\hline 3000 & 1000 & FORMAT (A80) \\
\hline 3100 & 2000 & FORMAT (56X, 218, A3) \\
\hline 3200 & & END \\
\hline
\end{tabular}
```

        100
        200
        300
        400
        500
    600
700
800
900
1000
1100
1200
1300
1400
1500
1600 1700

```
```

    SUBROUTINE GETFIL(LUN,*)
    ```
 SUBROUTINE GETFIL(LUN,*)
 CHARACTER FILNAM*40
 CHARACTER FILNAM*40
C
C
 GET NEXT FILENAME
 GET NEXT FILENAME
 TYPE 1000
 TYPE 1000
 ACCEPT 2000, FILNAM
 ACCEPT 2000, FILNAM
 C OPEN FILE
 C OPEN FILE
 OPEN(UN IT= LUN, NAME= F ILNAM, TYPE= 'OLD', READONLY, ERR= 199)
 OPEN(UN IT= LUN, NAME= F ILNAM, TYPE= 'OLD', READONLY, ERR= 199)
 RETURN
 RETURN
C NEW DMI FILE NOT FOUND
C NEW DMI FILE NOT FOUND
 TYPE *, FILNAM, 'FILE NOT FOUND'
 TYPE *, FILNAM, 'FILE NOT FOUND'
 RETURN 1
 RETURN 1
 FORMAT(' ENTER NAME OF NEXT DMI FILE: ',$)
 FORMAT(' ENTER NAME OF NEXT DMI FILE: ',$)
 FORMAT(A40)
 FORMAT(A40)
 END
```

    END
    ```
\begin{tabular}{|c|c|c|}
\hline 100 & & SUBROUTINE REDUCE (MATNAM, MATRIX, MROWS, NCOLS) \\
\hline 200 & & CHARACTER* 8 MATNAM \\
\hline 300 & & REAL MATRIX (MROWS, NCOLS) \\
\hline 400 & C & \\
\hline 500 & C & CHECK FOR SQUARE MATRIX \\
\hline 600 & & IF (NROWS . NE. NCOLS) THEN \\
\hline 700 & & TYPE *, MATNAM, 'NOT A SQUARE MATRIX. NO REDUCT \\
\hline 800 & & RETU IF \\
\hline 900
1000 & & ENDIF \\
\hline 1000
1100 & \(\xrightarrow[C]{\text { C }}\) & REDUCE TO (\(1 \times \mathrm{NCOL}\)) ROW VECTOR USING DIAGONAL VALUES \\
\hline 1200 & & DO \(100 \mathrm{~N}=1\), NCOLS \\
\hline 1300 & & \(\operatorname{MATRIX}(\mathbb{N}, 1)=\operatorname{MATRIX}(\mathbb{N}, \mathrm{N})\) \\
\hline 1400 & 100 & CONTINUE \\
\hline 1500 & & MROWS \(=1\) \\
\hline 1600 & & RETURN \\
\hline 1700 & & END \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 100 & & SUBROUTINE UNPACK MATRIX, MRONS, NCOLS CONTID LOR ALL \\
\hline 200 & & CHARACTER*72 RECORD \\
\hline 300 & & CHARACTER* 16 FLDID(2:5), CARDID*8, CONTID*3 \\
\hline 400 & & EQUIVALENCE (RECORD (\(1: 1\)), CARDID(\(1: 1)\)) \\
\hline 500 & & EQUIVALENCE (\(\operatorname{PECORD}(9: 9)\), FLDID (2)(1:1) \\
\hline 600 & & CHARACTER*6 FMT(6) , REAL, INTGR, BLANK \\
\hline 700 & & REAL MATRIX MROWS , NCOLS) \\
\hline 800 & & LOGICAL ALL, EOF \\
\hline 900 & & DIMENS ION VALUE (4), IVALUE (4) \\
\hline 1000 & & EQUIVALENCE (VALUE(1), IVALUE (1)) \\
\hline 1100 & & DATA FMT(1)/'(8X,'' , FMT(6)/'8X)'/ \\
\hline 1200
1300 & C & DATA REAL/'E16.8,'/ , INTGR'I \(16,{ }^{\text {, }}\), BLANK/'A16,'/ \\
\hline 1400 & C & ZERO THE MATRIX \\
\hline 1500 & & D0 \(100 \mathrm{I}=1\), MROWS \\
\hline 1600 & & DO \(100 \mathrm{~J}=1\), NCOLS \\
\hline 1700 & & MATRIX \((1, J)=0.0\) \\
\hline 1800 & 100 & CONTINUE 0.0 \\
\hline 1900 & C & \\
\hline 2000 & C & PROCESS THE DMI CARDS FOR THIS MATRIX \\
\hline 2100 & & DO \(400 \mathrm{~K}=1,1000000\) (\\
\hline 2200 & & READ (LUN, 1000, END=425) CARDID, FLDID \\
\hline 2300 & & IF (CARDID.EQ. 'DMI ') THEN \\
\hline 2400
2500 & C & THIS IS HEADER CARD OF NEXT MATRIX; THIS MATRIX DONE. \\
\hline 2600 & & IF (ALL) BACKSPACE- LUN \\
\hline 2700 & & ELSE IF (CARDID . EQ. 'DMI* ') THEN \\
\hline 2800 & C & THIS IS A COLUMN IDENTIFIER CARD \\
\hline 2900 & & READ (RECORD, 2000) JCOL, IROW, VALUE (1) \\
\hline 3100 & & MATRIX IROW, JCOL \()=\) VALUE (1) \\
\hline 3200 & & ELSE IF (CARDID (\(1: 3\)) EQ CONTID) THEN \\
\hline 3300 & C & THIS IS A ROW/VALUE CARD \\
\hline 3400 & C & DETERMINE TYPE OF CONTENTS IN FIELDS 2:5 \\
\hline 3500 & & \\
\hline 3600 & & IF (FLDID(L) (13:13) . EQ. 'E') THEN \\
\hline 3700 & & FMT(L) = REAL . EQ. E) THEN \\
\hline 3800
3900 & & ELSE IF (FLDID (L) (\(16: 16\)) . EQ. , ') THEN \\
\hline 4000 & & FLSE \({ }^{\text {FMT }}\) (L) \(=\) BLANK \\
\hline 4100 & & FMT(L) \(=\) INTCR \\
\hline 4200 & & ENDIF \\
\hline 4300 & 200 & CONTINUE \\
\hline 4400 & C & READ CARD IN APPROPRIATE FORMAT \\
\hline 4500 & & READ (RECORD, FMT, ERR=201) VALUE \\
\hline 4600 & C & PROCESS FIELDS 2:5 \\
\hline 4700 & 201 & DO \(300 \mathrm{~L}=2,5\) \\
\hline 4800 & & IF (FMT(L) . EQ. REAL) THEN \\
\hline 4900 & & MATRIX (IROW, JCOL \()=\operatorname{VALUE}(\mathrm{L}-1)\) \\
\hline 5100 & & ELSE IFON = IRON + 1 \\
\hline 5200 & & ELSE IF (FMT(L) EQ, INTGR) THEN \\
\hline 5300 & & ELSE IF (FATT(L) . EQ. BLANK) THFN \\
\hline 5400 & & CONTINUE \\
\hline 500 & & END IF \\
\hline 5600 & 300 & CONTINUE \\
\hline 5700 & & ELSE \\
\hline 58900 & C & THIS IS A NON-DMI CARD; THIS MATRIX DONE \\
\hline 6000 & & READ (RECORD, 1000) CARDID, FLDID \\
\hline 6100 & & END IF \\
\hline
\end{tabular}
```

6 2 0 0
6300
6400
6 5 0 0
6606
6700
6700 6800 6900 7000

```
\begin{tabular}{|c|c|c|}
\hline 100 & \multirow[b]{4}{*}{C} & SUBROUTINE WRTMTX MATNAM, MATRIX, MROWS, NCOLS) \\
\hline 200 & & CHARACTER MATNAM*8, NAME* 12 , \\
\hline 300 & & REAL MATRIX MROWS, NCOLS) \\
\hline 400 & & \\
\hline 500 & & NAME \(=\) MATNAM \(/\) '. MTX \({ }^{\prime}\) \\
\hline 600 & & OPEN(UNIT=50, NAME= NAME, TYPE= 'NEW', CARRIAGECONTROL = 'LIST') \\
\hline 700 & C & \\
\hline 800 & & WRITE(50, 1000) MATNAM, MROWS, NCOLS \\
\hline 900 & C & WRITE MATRIX TO ASCII FILE (1 VALUE PER RECORD \\
\hline 1000
1108 & & WRITE (50,2000) MATRIX \\
\hline 1200 & & TYPE * , MATRIX FILE HRITTEN \\
\hline 1300 & & TYPE *, MAATRIX FILE WRITTEN WITH MRONS, NCOLS: TYPE *, NAME, MROWS, NCOLS \\
\hline 1400 & & RETURN , Whels \\
\hline 1500 & C & \\
\hline 1600 & 1000 & FORMAT (AB, 2 I8) \\
\hline 1700 & 2000 & FORMAT (1PE16.8) \\
\hline 1800 & & END \\
\hline
\end{tabular}

\section*{GRDPTLST}

The freedoms output from processor UNPACKDMI are input to processor GRDPTLST to put them into final format for STATCORR. GRDPTLST operates interactively and prompts the user for the input file name and the output file name.

```

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2706
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4 1 0 0
4 2 0 0
4 3 0 0
4 4 0 0
4500

```
PROGRAM GRDPTLST
```

C THIS PROGRAM WILL READ THE TESET (DOF ID VS. GRID POINT ID)

```
C THIS PROGRAM WILL READ THE TESET (DOF ID VS. GRID POINT ID)
C MATRIX FILE OBTAINED FROM THE NASTRAN PUNCH FILE AND GENERATE
C MATRIX FILE OBTAINED FROM THE NASTRAN PUNCH FILE AND GENERATE
 A GRID POINT ID LIST FILE, USING THE NON-ZERO ENTRIES OF THE
 A GRID POINT ID LIST FILE, USING THE NON-ZERO ENTRIES OF THE
 TESET MATRIX.
 TESET MATRIX.
 CHARACTER*35 MTXF IL, GPFIL, MTXNAME*8
 CHARACTER*35 MTXF IL, GPFIL, MTXNAME*8
 GET TESET MATRIX FILENAME
 GET TESET MATRIX FILENAME
 TYPE 1000, 'ENTER GRID POINT ID MATRIX FILENAME:'
 TYPE 1000, 'ENTER GRID POINT ID MATRIX FILENAME:'
 ACCEPT 2000, MTXF IL
 ACCEPT 2000, MTXF IL
 OPEN(UN IT= 1, NAME= MTXF IL, TYPE= OLD', READONLY, ERR=10)
 OPEN(UN IT= 1, NAME= MTXF IL, TYPE= OLD', READONLY, ERR=10)
 READ(1,3000) MTXNAME, MROWS, NCOLS
 READ(1,3000) MTXNAME, MROWS, NCOLS
 IF (NCOLS . NE. 1) STOP 'ERROR: SHOULD BE ONLY ONE COLUNIN*
 IF (NCOLS . NE. 1) STOP 'ERROR: SHOULD BE ONLY ONE COLUNIN*
 C
 C
 GET GRID POINT LIST FILENAME
 GET GRID POINT LIST FILENAME
 TYPE 1000, 'ENTER GRID POINT ID OUTPUT LIST FILENAME:'
 TYPE 1000, 'ENTER GRID POINT ID OUTPUT LIST FILENAME:'
 ACCEPT 2000, GPFIL
 ACCEPT 2000, GPFIL
 OPEN(UNIT=2,NAME= GPF IL, TYPE= 'NEW', CARRIAGECONTROL= 'LIST')
 OPEN(UNIT=2,NAME= GPF IL, TYPE= 'NEW', CARRIAGECONTROL= 'LIST')
C GENERATE LIST FILE FROM NON-ZERO MATRIX ENTRIES
C GENERATE LIST FILE FROM NON-ZERO MATRIX ENTRIES
 NIDS = 0
 NIDS = 0
 DO 100 MDOF=1,MROWS
 DO 100 MDOF=1,MROWS
 READ(1,5000) GRDPT
 READ(1,5000) GRDPT
 IF (GRDPT . NE. 0.0) THEN
 IF (GRDPT . NE. 0.0) THEN
 IGRDPT = INT(GRDPT)
 IGRDPT = INT(GRDPT)
 COMP = GRDPT - FLOAT(IGRDPT)
 COMP = GRDPT - FLOAT(IGRDPT)
 ICOMP = NINT(10.0*COMP)
 ICOMP = NINT(10.0*COMP)
 IF (ICONP .GT. 6) THEN
 IF (ICONP .GT. 6) THEN
 IGRDPT = IGRDPT + 1
 IGRDPT = IGRDPT + 1
 ICOMP = 0
 ICOMP = 0
 END IF
 END IF
 WRITE(2,6000) IGRDPT, ICOMP, MDOF
 WRITE(2,6000) IGRDPT, ICOMP, MDOF
 NIDS = NIDS + 1
 NIDS = NIDS + 1
 END IF
 END IF
 CONTINUE
 CONTINUE
 CLOSE(UNIT=1)
 CLOSE(UNIT=1)
 ClOSE(UNIT=2)
 ClOSE(UNIT=2)
 TYPE *, NIDS, 'ENTRIES WRITTEN TO GRID POINT LIST'
 TYPE *, NIDS, 'ENTRIES WRITTEN TO GRID POINT LIST'
 STOP
 STOP
C
C
 1000 FORMAT(1X, A44, 1X, 8)
 1000 FORMAT(1X, A44, 1X, 8)
 2000 FORMAT(A35)
 2000 FORMAT(A35)
 3000 FORMAT(A8, 2I8)
 3000 FORMAT(A8, 2I8)
 4000 FORMAT(1X,A8,
 4000 FORMAT(1X,A8,
 5000 FORMAT(E16.8)
 5000 FORMAT(E16.8)
 6000 FORMAT(I8,'-', I 1, I 12)
 6000 FORMAT(I8,'-', I 1, I 12)
 END
```

        END
    ```

\section*{FUTURE REQUIREMENTS}
1. If the practice of comparing analysis with test, as outlined here, for certifying a design should become commonplace, one could imagine that the demand for additional information would increase. Instead of depending on a comparative analysis to indicate that differences do exist, and roughly where, engineers increasingly might require comparative analysis to predict more precisely where differences arise and their causes. An extension of the existing method in this direction would be to apply a correlation function using a correlation displacement variable. Consider the expression
\[
\emptyset(P, r, s)=\int_{V_{p}} T\left(x_{p}, y_{p}, z\right) \times A\left[\left(x_{p}-r, y_{p}-s\right) z\right] d V
\]
\(\emptyset\) measures the best correlation of a test function \(T\) at a particular point \(P\left(x_{p}, y_{p}, z_{p}\right)\) with an analytical function \(A\) in the neighborhood of \(P:\left[V_{p}\right]\) as the analytical function is evaluated at displacement distances (\(r\) and \(s\)) away from \(P\) in \(x\) and \(y\). The motivation for considering such a quantity is to explore a point at which earlier results of a correlation coefficient showed consistent differences over a number of modes at one location of the structure. Since tests are limited as to the intensity of data obtainable in a small region, the test coordinate can be held constant in one or two dimensions while the analysis mesh is intensified in the region to provide enough definition to step through values of \(r\) and \(s\) to find what location in the vicinity of \(P\) shows greater correlation of \(A\) with T at P . Such a spatial correlation function might prove helpful in exploring a design defect or an analytical modeling error of a structure.
2. Another extension is to equip the correlation to make comparisons on the basis of mode shapes defined in the complex domain. Correlation with a damping displacement variable could prove useful in refining the damping away from average modal considerations to spatial distributions of damping.
3. Currently, the analysis presumes that any particular point on the test article, instrumentation can detect only one component direction of behavior. If multi-axis behavior at a test point can be provided, the component at an analytical point can be implemented by adding one more digit after the decimal point of the real number representing a grid point. The processor program can discriminate to the nearest integer by multiplying by 10 , and then rounding off. Thus, the real value in TESET and DOFLIST can reflect correspondence in keeping with increased experimental detail.
4. Processing of analytical data in preparation for STATCORR is handled in discrete operations. If a number of different analytical runs are being processed at the same time for later assembly as STATCORR input, their separate results might get uncoordinated, so that a symmetric mode shape, adjusted for sign at certain image points might be identified with a wrong frequency or modal stiffness. With further effort, the several operations could be combined with automated bookkeeping to eliminate the risk of getting results scrambled.
5. Human error can be further reduced if the entire analysis were made interactive with computer prompts. Then when STATDMAP is accessed from USERLIB, the whole sequence of orderly information train could be set in motion to keep all relations coordinated.
6. STATCORR can be readily extended to comparisons of static loadings. First of all, the mean, \(x^{\prime}\), has entirely different meaning in statics than in modal analysis. \(x^{\prime}\) for statics cannot be prescribed as the equilibrium position. The non-zero mean must be reintroduced into the stochastic quantities. Scaling was meaningful for eigenvalues because the method of normalizing could be arbitrary. The relative deviation of equation (7) should use actual unscaled response data for identifying magnitudes of difference.
7. The implementation of the option for comparing symmetrically based analysis against samples over the entire test article was restricted to the use of basic coordinates only. A logical extension is to allow any number of rectangular coordinates for defining direct and image points. Enough extra work would be involved to implement more than one coordinate system, that it may be tolerable to limit the first extension of rectangular coordinates whose planes are parallel to the planes of symmetry. In a second extension, all types of coordinates can be logically admitted.

\section*{USER MANUAL SUMMARY}

This document is intended to serve as a guide for comparing analytical modes with test when using NASTRAN, STATCORR and its associated processors, in conjunction with the test data.

First, select one of three bases of comparison: (1) whole vs. whole in which both the analytical modeling and the test instrumentation involves the whole structure; (2) symmetric vs. symmetric in which the analytical modeling and the test instrumentation involves only a basic segment of reflective symmetry; and (3) symmetric vs. whole in which the analysis is based upon modeling of only a basic segment of reflective symmetry and the test is based upon instrumenting the whole structure.

\section*{USER MANUAL SUMMARY \\ }
\begin{tabular}{|c|c|c|c|}
\hline step/route & E WHOLE/WHOLE & SYM/SYM & SYM/WHOLE \\
\hline \multirow[t]{5}{*}{LIASION} & \multicolumn{3}{|l|}{Establish (a) coordinate system (b) odel locations of instrumented poiris (c) component directions at each location, (d) ideritification number of each point.} \\
\hline & Amalytical model should contain. grid point corresponding to each instrumented paint. & Analytical model should contain a grid point correspondirig to each instrumented point withir, the basic segment. Test should have additionsl instrumentation outside the basic segmerit to sense phase relatianship with respect. reflected segmerit to ascertain the type of modal symmetry ecross planes of symmetry. & Aralytical model should contain a grid point corresponding to each direct point, imase point, and cloned poirit which is instrumented on the test article. \\
\hline & \multicolumn{3}{|l|}{Determine the precise boundary condition at every test support point and include that boundary behavior at corresponding points in the analytical model. Special care should be taken to ensure that boundary elasticity be measured at an apparent firm boundary point.} \\
\hline & \multirow[t]{2}{*}{} & Agree on which plane will be called the lst plane of symmetry; which the secorid plane of symmetry; and which the 3rd plane of symetry. Agree on how each plane is tho be defined in terms of the basic coordinate system. & Agree on which plane will be called the lst plane of symetry; which the second plane of symmetry; and which the 3rd plane of symmetry. Agree on how each plane is to be defined in terms of the basic coordinate system. \\
\hline & & & Check to see tht instrumented points wher, reflected back to the basic segment will coincide with point of the analytical -odel. When instrumented points in different octants all reflect back to the same point in the model, agreement on its multiplicity will establish the number of clones needed. Each clone bears the number of particular instrumented point. \\
\hline \multirow[t]{3}{*}{BTRUCTURAL andlysis} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Precede Eigenvalue Run with CHKPNT YES and DIAG 21,22 commands, then take an exit after GP4 has executed using the ALTER packet: ALTER 53, EXIT ©, ENDALTER. Use listings of DiAG 21 and 22 to construct partitioning vector reser. \\
Use DIAG 21 and 22 data to construct the
\end{tabular}} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
Merge CHKPNT dictionary after ID card for RSTRT run. Remove ALTER for exiting after opt. Remove piag 21 and 22. Add IIAG 14. Recorisider use of CHKPNT; gerierally advised if model is large. If mass of model checks o.k., disable \\
 structions in packet \(A \star A P A \star A\) ror the preparation of TESET data. For an explariation of these iristructions see page \\
 suit the route before merging.
\end{tabular}} \\
\hline & & & \begin{tabular}{l}
If coord system is rectangular, enter data \\
at locations: AAAAAAAA, ABABABAB, \(A C A C \star C A C\). Remove phrases pertaining to cylindrical and spherical coordinate systems. If coord system is cylindrical, enter data at locations \(\star\) Ititity. Kemove phrase pertainifig to rectangular and spherical coord systems. Enter
\end{tabular} \\
\hline
\end{tabular} gtep/route
points in precise boundary condition at every test support point and include that boundary behavior at corresponding paparent firm boundary point. Agree on which plane will be called Agree on which plane will be called the second plane of symmetry; zind the ist plane of symmetry; which which the 3rd plane of symnetry. which the 3rd plane of symmetry. Agree on hou each plarie is to be Agree on how each plane is to be
definied in terms of the basic derined in terns of the basic coordinate system.

\section*{ORIGINAL PAGE IS OF POOR QUALTTY}
over the frequency rarige.
Fetch the MERGE procesior from the directory DRAO:CNASCAT.UTIIITY.STATCORK.OLIJAERGE.EXE.

> Send kappa and mu.
\[
\begin{aligned}
& \text { symaetric case. } \\
& \text { SYM\&PLAN is attached to each PHITE. } \\
& \text { Sorted on freauency. }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Sorted an frequency. } \\
& \text { Herged. }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Merged. } \\
& \text { Duplicates removed. } \\
& \text { Output. }
\end{aligned}
\]
values of INX for parameters SYM\#PLAN that
indiche SPC case in Case Control. Kemove sis* from in iront of Limap statements Sl thry se.
Remove iss from ahead of ALTEk 125 . If coord system is spherical, remove phrases pertaining
to rectangular and cylindrical coord systems.
 the very end of AlIER packet. preparation of porlist data. For art explanation STATCORR report. Bulk Data for IDCORD. Follow
 of IDCOKD data.
Kemove shl from ahead of MAAP statemerit \(w 1\). Merge AlTER ito EXECC. Check to see that ENDALLER is only at the very end of ALTER
packet.

 as many eigenvalue runs as is necessary to span the frequency range. Change IN1 values for parameters SYM\&PLAN to correspond to symmetry accordirg to now
sFc set. Make as many eigenvalue runs as is necessary to model every type of symmetry
If the DHAP ALTER executed successfully, the following messages will be found in the job listirg:

\[
\begin{array}{ll}
\text { Input SYM\&PLAN vs.PHITE for every } & \text { Input noFlist, IDCORD. } \\
\text { symaetric case. } & \text { Output for whole. }
\end{array}
\]

\footnotetext{
For sale by the National Technical Information Service, Springfield, Virginia
}```

