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Abstract Land cover change (LCC) models are used in

many studies of human impacts on the environment, but

knowing how well these models predict observed changes in

the landscape is a challenge. We used nearly three decades of

LCC maps to run several LCC simulations to: (1) determine

which parameters associated with drivers of LCC (e.g. roads)

get selected for which transition (forest to deforested,

regeneration to deforested or deforested to regeneration); (2)

investigate how the parameter values vary through time with

respect to the different activities (e.g. farming); and (3)

quantify the influence of choosing a particular time period

for model calibration and validation on the performance of

LCC models. We found that deforestation of primary forests

tends to occur along roads (included in 95 % of models) and

outside protected areas (included in all models), reflecting

farming establishment. Regeneration tends to occur far from

roads (included in 78 % of the models) and inside protected

areas (included in 38 % of the models), reflecting the

processes of land abandonment. Our temporal analysis of

model parameters revealed a degree of variation through

time (e.g. effectiveness of protected areas rose by 73 %,

p \ 0.001), but for the majority of parameters there was no

significant trend. The degree to which model predictions

agreed with observed change was heavily dependent on the

year used for calibration (p \ 0.001). The next generation of

LCC models may need to embed trends in parameter values

to allow the processes determining LCC to change through

time and exert their influence on model predictions.

Keywords Model calibration � Land-cover change �
Predictive models � Transition length � Temporal trends �
Model performance

Introduction

Human induced land cover change (LCC) in the tropics is

severely altering landscapes, causing the depletion of many

species’ habitat (Gibson et al. 2011) and increasing the

amount of carbon released to the atmosphere (Baccini et al.

2012). LCC models are used in many studies such as those

that study the impact of building a new road (Soares-Filho

et al. 2004) or those that aim to estimate carbon losses due

to LCC (Galford et al. 2010). There are many models that

predict future LCC (Rosa et al. 2013; Soares-Filho et al.

2006; Verburg et al. 2013), but knowing how well these

models predict the observed changes in the landscape is

still a challenge (Brown et al. 2013). Here, using a case

study in the Brazilian Amazon we tackle this problem by

investigating how well these models work and how reliant

they are on the timing and time-scale of the data.

The modern era of Amazonian deforestation began in the

1960s and 1970s with colonisation schemes implemented
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by the Brazilian government, which aimed to relocate

unemployed people from other parts of Brazil (Fearnside

2005). Later, with the healthy Brazilian economy growing

fast and the increasing demand for agriculture products

from other parts of the world, there was rapid expansion of

large-scale agriculture (Nepstad et al. 2006b). In more

recent years, however, the Brazilian government policies

against illegal deforestation (Soares-Filho et al. 2010),

market-based campaigns (Rudorff et al. 2011) and the

coincident global economic crisis have reduced the rate of

deforestation (INPE 2014) and altered the spatial pattern of

forest clearings (Rosa et al. 2012).

Here, we focus on a study region located in the

municipality of Machadinho d’Oeste, in the state of

Rondônia (Fig. 1). The whole municipality shares a similar

LCC history since it was all included in the planned set-

tlement program implemented by the government in the

1980s (Batistella and Moran 2005). The majority of people

in the municipality are dependent on small-scale agricul-

ture and less than half live in urban areas (Miranda 2012).

With such an intense relationship between people and

agriculture it is not surprising that this municipality has

been undergoing severe deforestation since the settlement

was created in 1982. By 1997 it had lost 30 % of its ori-

ginal forest extent (Mangabeira et al. 1998), and by 2005

the original landscape had been transformed into a mosaic

of remnant forest patches, secondary vegetation, pastures,

agriculture lands and small urban areas (Gomes et al.

2009). The main sources of income for families in the

region are livestock and coffee (Miranda et al. 2008; Go-

mes et al. 2009). In line with the rest of Rondônia, the

livestock numbers in Machadinho d’Oeste rose sharply

from 4,000 in 1989 to more than 215,000 by 2007 (IBGE

2006). Since then the rate of forest loss has declined, and in

places even reversed with land abandonment having led to

regenerating secondary forest.

Land cover change models

LCC models are useful tools that can be used to provide

future simulations of landscape modification under specific

scenarios. These models examine and statistically define

Fig. 1 Location of study area (a) and land cover change from 1991 to 2011 (b). The maps also show the drivers of change considered in the

models: settlements (Machadinho d’Oeste), rivers, roads and protected areas
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the spatial patterns of LCC in a particular time period, and

use these observations to make future predictions. The

choice of time period is, in most instances, limited by data

availability (e.g., excessive cloud cover in satellite imag-

ery), while sometimes it can be tied to the desire of

studying the effect of a particular climate phenomena such

as El Niño (Ramos da Silva et al. 2008), the effect of

implementing new protected areas (Soares-Filho et al.

2006; Yanai et al. 2012) or paving a road (Soares-Filho

et al. 2004). Since these models are heavily dependent on

the input data used to calibrate the model, one of the main

limitations of LCC models is that the parameters used in

future simulations are essentially frozen in time, with the

statistical description of LCC patterns estimated at a single

time period and implicitly assumed to remain constant into

the future. The fact that the parameters are not updated

through the simulations means that the effect of a variable,

such as distance to roads or the effectiveness of protected

areas, for instance, remain the same through time. This is a

problem because we do not know how this artefact of

freezing time and assuming that the processes that drive

LCC do not change propagates through model predictions

to generate errors in LCC predictions.

Ideally, we would always include up-to-date parameter

estimates in model simulations, but this is not feasible

when predicting the future because of the self-evident lack

of future data for many of the most important drivers of

LCC in the tropics, such as future road network develop-

ment (Ahmed et al. 2013) or future prices of agricultural

products such as soybeans. As a result, models are limited

in their ability to incorporate many of the constantly

changing human dimensions of LCC. Modellers try to

minimize this limitation by the use of scenarios (Soares-

Filho et al. 2006; Maeda et al. 2011; Yanai et al. 2012),

which are usually based on storylines describing suites of

parameter changes.

We took advantage of a large historical database

encompassing nearly three decades of LCC to run several

model simulations, quantifying the degree to which freez-

ing parameters in time can influence the model outputs.

Specifically, the objectives of our study were to: (1)

determine which parameters are associated with different

forms of LCC (forest to deforested, regeneration to defor-

ested or deforested to regeneration); (2) investigate how the

parameter values vary through time and with respect to

different processes underlying LCC change (e.g. farming,

abandonment); and finally (3) quantify the influence of

choosing a particular time period for model calibration and

validation on the accuracy of LCC predictions. Together,

our analyses are designed to examine the robustness of the

modelling techniques currently used to predict LCC, with a

view towards developing models that appropriately quan-

tify the uncertainty in LCC predictions.

Materials and methods

Data sources and preparation

The dataset, covering an area of 1,779.80 km2

(37.62 9 47.31 km), is composed of land cover maps at 20

points in time during the period 1986–2011 (Carreiras et al.

2012; Prates-Clark et al. 2009). Using a high frequency

time series of 30 m spatial resolution Landsat 5 Thematic

Mapper (TM), the authors (Carreiras et al. 2012; Prates-

Clark et al. 2009) classified these satellite images into three

classes: mature forest (hereafter referred to as forest),

secondary forest (regeneration) and non-forest (deforested).

To model the probability of LCC in each year we used five

explanatory variables, which include the most important

proximate causes of deforestation in the region: location of

previous deforestation (contagion) (Alves 2002; Rosa et al.

2013), distance to roads (Pfaff et al. 2007), distance to

rivers (Pfaff 1999), distance to settlements (Pfaff 1999) and

protected areas (Nepstad et al. 2006a). The roads (both

official and unofficial) and protected areas datasets were

obtained from the Instituto do Homem e Meio Ambiente da

Amazônia (Imazon), and the rivers and settlements maps

were obtained from the Instituto Brasileiro de Geografia e

Estatı́stica (IBGE) (Fig. 1).

For areas of regeneration only, we also included three

additional metrics generated from the time series of land

cover itself (Fig. 2) (Carreiras et al. 2012): the period of

active land use (PALU) prior to land abandonment, which

is the number of years the land was used for agriculture

before it was abandoned; the age of regenerating forest

(ARF), which is the number of years since the land was

abandoned after being deforested and allowed to regener-

ate; and the frequency of clearance (FC), which is the

number of times a pixel of forest or regeneration was

cleared (deforested) until a particular year (Carreiras et al.

2012). All data described above were converted to 30 m

cell size to match the land cover dataset, using a Universal

Transverse Mercator (UTM) coordinates system (zone 20

S), WGS-84 datum.

The data collected and described above were separated

into two categories of variables: static (roads, rivers, settle-

ments and protected areas) and dynamic (land cover and

proportion of deforested/regeneration neighbours) variables

(Soares-Filho et al. 2002). Static variables represented fea-

tures that are assumed to stay constant through time (e.g.

rivers) or that we lack information to be able to updated them

through time (e.g. roads) and were only calculated once in the

beginning of the modelling process. Dynamic variables, by

contrast, represent features that change through time and

were re-calculated at the beginning of each model time

simulation. The main limitation of our study is our inability

to add more dynamic variables in our model.

Performance of LCC models
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Landscape change in the study region

We calculated the proportion of the landscape occupied by

the three land cover classes at each of the 20 time points for

which we had land cover maps, and determined the rate of

change for each transition type in each of the 19 time

periods separating adjacent time steps. We used linear

regression models (R Development Core Team 2014) to

test whether the rates of change in each of the three land

cover transitions were constant or significantly changing

through time. These analyses were performed in two ways,

first using the proportion of land occupied by each land

cover type as the response variable, and second using the

rate of change in each land cover transition as the response.

StocModLCC: stochastic modelling of land cover

change

Our LCC modelling approach is based on that of Rosa et al.

(2013), who developed a dynamic and spatially-explicit

model to predict the potential magnitude and spatial pattern

of deforestation (http://stocmodlcc.net). It differs from

previous models in three ways: (1) it is probabilistic rather

than deterministic, allowing quantification of statistical

uncertainty around the predictions; (2) the rate of LCC

emerges ‘bottom up’, as the sum of local-scale probabilities

driven by local processes; and (3) LCC is modelled as a

contagious process, such that local rates of LCC increase

through time if adjacent locations have experienced similar

recent change (Fig. 3).

The fact that the dataset had three land cover classes

allowed us to model three specific LCC transitions rather

than the single transition of forest to deforested imple-

mented by Rosa et al. (2013), where the model is described

in full detail. Therefore, we constructed independent

models of: forest to deforested (FtoD), regeneration to

deforested (RtoD) and deforested to regeneration (DtoR).

Given a land cover map of time t with three land cover

classes (forest, regeneration and deforested), for each pixel

of forest at time t, the model calculates the probability of

Fig. 2 Three landscape metrics used to model the regeneration to

deforested (RtoD) transition. The period of active land use (PALU)

represents the number of years an area has been used for agriculture;

the age of regenerating forest (ARF) is the number of years an area

has been allowed to regrowth after it has been deforested; and the

frequency of clearance (FC) is the number of times the same area has

been deforested until a specific year (2011 in this example)

I. M. D. Rosa et al.
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being deforested at time t ? n; for each pixel of regener-

ation the model calculates the probability of being defor-

ested at time t ? n; and for each deforested pixel the model

calculates the probability of becoming regeneration at time

t ? n, with n being the number of years between consec-

utive dates.

Using as an example the transition FtoD, the model was

based around Pdefor,x,t, the probability that pixel/cell x

becomes deforested (or is converted to regeneration in the

case of the DtoR transition—Preg x,t) in a set interval of

time t. This probability was defined as a logistic function:

Pdefor;x;t ¼ 1=ð1þ exp�jx;tÞ ð1Þ

such that as jx,t goes from minus infinity to plus infinity,

Pdefor,x,t goes from 0 to 1. Then we wrote simple linear

models for jx,t as a function of each driver variable, or a

combination of these, affecting location x at time t.

We used the C?? library ‘Filzbach’ (http://research.

microsoft.com/en-us/projects/filzbach/) to return, for each

parameter being considered in the model, a posterior

probability distribution using Markov Chain Monte Carlo

sampling techniques. From these distributions we extracted

the posterior mean, and a credible interval, which were then

used to draw parameter values, for each iteration, allowing

the quantification of uncertainty around predictions.

Fig. 3 Modelling procedure

flowchart. The flowchart

illustrates the construction and

running of the land cover

change model. i refers to the

model iteration, t is the first date

and t ? n represents the second

date being modelled

Performance of LCC models
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When considering multiple drivers, a forward stepwise

regression was performed in order to determine the best

model for each land cover transition. The log-likelihood of

each model is defined as follows:

‘ðXjs; hÞ ¼
X

x;t

logfZx;tPdefor;x;t þ ð1� Zx;tÞð1� Pdefor;x;tÞg

ð2Þ

where Zx,t is the observed deforestation at location x at

time t, and s refers to one of the models considered. At

each step of the forward stepwise regression, a cross-

validation was carried out by parameterising the model

against a randomly selected subset of 50 % of locations

(50 % of forest pixels when the transition being modelling

is FtoD, 50 % of regeneration pixels when the transition

being modelling is RtoD or 50 % of deforested pixels

when the transition being modelling is DtoR), calculating

the training likelihood, and then calculating the test

likelihood on the remaining 50 % of the locations (forest,

regeneration or deforested, depending on the transition

being modelled).

The best models were selected as the ones with the

maximum test likelihood for each land cover transition,

and parameter estimates from the best models were then

used to run simulations of future LCC. At each time step,

after re-applying Eq. 1 we obtained an updated Pdefor,x,t

(or Preg x,t,—probability of regeneration—depending on

the land cover transition being modelled) for each loca-

tion x, which was then deforested (or converted to

regeneration) with that probability. In practice, this was

implemented as follows: for each x, draw a random

number from a uniform distribution bounded at 0 and 1,

deforest (or convert to regeneration) x if this number is

less than Pdefor,x,t (or Preg x,t). After these defor-

estation/regeneration events were implemented, Pdefor,x,t

and Preg x,t were calculated for every location x again,

allowing for another round of LCC. This procedure is

analogous to a weighted selection allowing for some

locations with low probability to still be selected to

undergo LCC, although, naturally, pixels with higher

probability of change will more often change state.

Finally, given that our modelling framework has a very

strong stochastic component (Rosa et al. 2013) with each

individual deforestation/regeneration event being drawn

using a weighted probability, each simulation was repe-

ated for 100 iterations, using sets of parameter values

randomly drawn from the posterior probability distribu-

tions. This allowed us to construct confidence intervals

around our model predictions that account for the statis-

tical uncertainty involved in parameter estimation. For

each simulation, we output the predicted probability per

land cover transition, the annual change on each of the

land cover transitions and the new land cover map.

Temporal variation in the causes of LCC

Our first analysis was to investigate how the set of

parameters that described the impact of explanatory vari-

ables on LCC varied among LCC transition types and

through time, and whether these could be associated which

particular LCC processes in the region. To do this we fitted

all single driver models (univariate analysis) to explain the

effect of each predictor variable individually on each LCC

transitions. In this analysis jx,t was defined by only one of

the predictors at a time. After determining the parameter

values associated with each driver of change in each

transition and time period we used linear regression models

(parameter value as the dependent variable and time/rate as

independent) to test for any trend that would indicate the

parameter values had changed through time (transition

period) or in relation to the rate of respective LCC.

The impact of choosing a particular time period

for calibration and validation

Having a large land cover dataset allowed us to test if using

different calibration years (the year of the initial maps used

for model calibration), different transition lengths (the

number of years between the initial and final map used in

model calibration), validation year (the year used for model

validation), and the number of time steps the model is

extrapolated into the future (number of time steps until year

used for validation) had important impacts on the ability of

LCC models to predict future LCC. To do this, we used all

prior land cover maps to parameterise, as described above,

the set of 40 models (out of a total of 66 possible models)

that generated predictions for the year 2011 (Fig. 4). For

example, the six-year transition period 1991–1997 models

land cover in six-yearly intervals giving predictions for

1997, 2003 and 2010, but not 2011, and therefore could not

be used in our analyses. By contrast, there were three time

Fig. 4 Illustration to show the combination of land cover maps and

transition lengths that allow the model to predict of a land cover map

for 2011 (in black). Grey bars show years with no data available

I. M. D. Rosa et al.

123



periods beginning in 1991 that did predict land cover in

2011 and were used: 1991–1995 (2011 will be the 5th time

step predicted, transition length equals 4 years),

1991–1996 (4th time step predicted, transition length

equals 5 years) and 1991–2001 (2nd time step predicted,

transition length equals 10 years).

For each of the 40 models, the process started with a

forward stepwise regression, as described above, where at

each step, and for each land cover transition, models dif-

fered only in the combination of variables included in the

definition of jx,t (Rosa et al. 2013). The best models were

selected as the ones with the maximum test likelihood for

each of the 120 stepwise regressions (40 models times three

land cover transitions). These best models for each land

cover transition were then used to run 40 separate simula-

tions of LCC, each of which predicted the spatial pattern of

land cover until 2011. This provided an updated Pdefor,x,t (or

Preg x,t,) for each location x, which was then deforested (or

converted to regeneration) with that probability.

Finally, to assess how well each of these 40 LCC models

was able to predict the actual pattern of land cover we

employed a pixel-by-pixel validation metric called perfect

match, which tests if the model was able to predict the

exact location of a land cover on that specific year. We

chose this metric because, although it can be considered

more rigid when compared to neighbourhood metrics such

as the Kappa-family (Pontius and Millones 2011), it is

more informative in showing how well the model is pre-

dicting change. Further, it does not compare our predic-

tions to a naive or random baseline (Pontius et al. 2008;

Pontius 2002; Huang et al. 2012) but with what was

actually observed. First, using 2011 as an example of

validation year, the observed change in land cover between

the two observed maps (initial land cover and 2011) was

calculated: if x is 1 (forest) in the initial map and 0

(deforested) in 2011, gets the value 1; or if it is 2 (regen-

eration) in the initial map and 0 in 2011 gets the value 2;

and finally, if it is 0 in the initial map and 2 in 2011 gets the

value 3. Second, we calculated the predicted change by

following exactly the same procedure using the predicted

maps of 2011 (the 100 land cover outputs from the 100

iterations of the model) instead of the observed map. Third,

we compared the 100 predicted maps of change against the

observed map of LCC. When the value of x (1, 2 or 3) is

the same in both the observed and predicted change maps,

the pixel gets the value 1, otherwise it gets the value 0.

Finally, we summed all pixels with value 1 and divided this

number by the total amount of observed change, including

all land cover transitions. This methodology avoids vali-

dating pixels that do not change during the modelled period

(Pontius Jr et al. 2004), which would inevitably lead to

high but unrealistic values of perfect match. Combining the

results of the 100 iterations we calculated the mean

percentage of perfect match across iterations. Every land

cover map available was used as validation year, which

means that each model was validated against several land

cover maps in time. For instance, the 2005–2006 model

was validated for 5 years (2007, 2008, 2009, 2010 and

2011).

Results

Historical landscape change

The landscape in our study region was highly dynamic

during the period 1986–2011, with large temporal changes

in the proportion of the area occupied by each of the three

land cover classes (Fig. 5a). There was a strong decrease in

the proportion of area occupied by forest (slope = -2.43,

t = -36.22, R2 = 0.99, df = 19, p \ 0.001) that was

accompanied by an expected increase in the proportion of

area occupied by the other two classes (deforestation:

slope = 1.48, t = 17.6, R2 = 0.94, df = 19, p \ 0.001;

regeneration: slope = 0.93, t = 7.91, R2 = 0.78, df = 19,

p \ 0.001). However, these changes appear to be stabilis-

ing with only small changes in the proportional abundance

of the three land cover classes since the mid-2000s. By

contrast, there was high annual variability in the rates of

each LCC transition type (Fig. 5b), with no significant

temporal trends detected for any transition type (|t| \ 1.7,

R2 \ 0.14, df = 17, p = 0.09).

Temporal variation in the causes of LCC

Parameter values found in the univariate analysis supported

expected trends, with estimates varying among the three

transition types (Fig. 6). Deforestation happened closer to

roads and settlements but afforestation happened further

away from human presence (Fig. 6c and e, respectively).

Protected areas played an important role inhibiting defor-

estation and favouring regeneration (Fig. 6f). Furthermore,

all three transitions presented some degree of contagion

(Fig. 6b), although this pattern was found to be stronger in

the FtoD transition than in the others.

Few parameters exhibited significant temporal trends,

suggesting their effects were relatively constant through

time (Fig. 6). Exceptions were the ability of protected areas

to prevent deforestation, which increased in strength by

73 % through time (slope = -0.04, t = -7.27, R2 = 0.76,

df = 17, p \ 0.001); the contagion effect of deforestation

in the RtoD transition showed a strong positive trend

through time (slope = 0.08, t = 4.54, R2 = 0.55, df = 17,

p \ 0.001), varying more than six-fold, as well as the

contagion effect of regeneration in the DtoR transition

(slope = 0.21, t = 7.79, R2 = 0.78, df = 17, p \ 0.001),

Performance of LCC models
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varying by more than three times. Finally, the effect of the

frequency of clearance also revealed a significant positive

trend through time in the transition RtoD (slope = 0.02,

t = 3.48, R2 = 0.21, df = 17, p = 0.003).

Most parameter estimates were robust to the rate of

change, meaning that years with higher amounts of land

changing did not result in big changes in the parameter val-

ues. The only exception was for the transition DtoR in

relation to distance to settlements (there was just one set-

tlement in the study area and two in the periphery). In years

with higher rates of regeneration, it tended to happen further

away from human-related activities (slope = 2.82 9 10-10,

t = 4.82, R2 = 0.58, df = 17, p \ 0.001).

Parameter estimates from the 120 stepwise-based mod-

els were consistent with the results from the univariate

models (Table 1). Contagion, distance to roads, and pro-

tected areas were consistently important (present in 100, 95

and 100 % of the FtoD models, and 100, 90 and 42.5 % of

the RtoD models), but their effect on DtoR differ from the

other two transitions. Rivers were sometimes important but

with no consistent direction of effect, while settlements

rarely mattered except for DtoR transition. Finally,

regarding the three landscape metrics only present in the

models of the transition RtoD, ARF was found to be the

most regularly present on the best models (60 %), followed

by FC (47.5 %).

The impact of choosing a particular time period

for calibration and validation

Calibration starting year, the number of years between

calibration years (transition length), the year being vali-

dated and the time step of the model being validated had

variable impacts on how well the model was able to per-

fectly predict the observed land cover map (Fig. 7;

Table 2). We found that model performance was signifi-

cantly affected by the initial year and validation year,

whereas the length of the transition period and, surpris-

ingly, the number of time steps in the future had no sig-

nificant effects on their own (Table 2).

Model predictions improved with later starting years as

well as later validation years (Fig. 7a, d). Intuitively, this

indicates that when trying to predict a land cover pattern it

is better to use maps from a date closer to the one we are

Fig. 5 a Proportion of forest,

regeneration and deforestation

between 1986 and 2011 in study

area; No Data refers to a

common water mask that was

applied to all the dates in the

time-series. b The rate of

change in each of the three land

cover transtions: forest to

deforested (FtoD), regeneration

to deforested (RtoD) and

deforested to regeneration

(DtoR)

I. M. D. Rosa et al.
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trying to predict. Furthermore, we found that using a larger

transition length does not necessarily translate into more

precise predictions (p [ 0.05, Fig. 7b). However, when

combined with the calibration year there was a highly

significant interaction (p \ 0.001), suggesting that once we

settle on an initial year for calibration the choice of how

long or short the transition length is will greatly influence

our ability to predict landscape change. In particular, after

choosing a recent map of land cover for modelling, a

shorter transition length led to better model performance

rather than a longer transition length.

Discussion

The landscape in our study region has changed dramati-

cally during the last 30 years, with the amount of primary

forest dropping by almost two-thirds between 1986 and

Fig. 6 Mean values of parameters (plus 95 % CI) for all one-parameter models fitted between 1986 and 2011. In the 1986 map, the area of

regeneration is very small which leads to higher uncertainties (larger CIs) in the parameters values found for this transition in this year

Performance of LCC models
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Table 1 Results from the 40 modelling procedures: number of times each parameter was included in the best model (given in % of the 40

models), used for simulation on each land cover transition

Land

cover

transition

Intercept Contagion Distance

to roads

Distance to

rivers

Distance to

settlements

Age of

regeneration

Frequency

of

clearance

Period

of

active

land use

Protected

areas

Included in

best model

(%)

FtoD 100 100 95 45 2.5 x x x 100

RtoD 100 100 90 60 0 60 47.5 27.5 42.5

DtoR 100 77.5 77.5 37.5 37.5 x x x 37.5

Positive

percentage

(%)

FtoD 5 100 0 16.67 0 x x x 0

RtoD 27.5 92.5 0 54 0 0 89 64 0

DtoR 17.5 55 100 80 93 x x x 87

Average FtoD -2.00 4.00 -0.00056 -0.00003 -0.00001 x x x -1.48

RtoD -1.00 1.16 -0.00016 0.00001 0 -0.21 0.21 0.05 -0.36

DtoR -1.42 -0.65 0.00035 0.00002 0.00004 x x x 0.15

SE FtoD 0.19 0.34 0.000023 0.0000043 0 x x x 0.07

RtoD 0.23 0.17 0.000013 0.0000076 0 0.03 0.03 0.02 0.04

DtoR 0.21 0.42 0.000018 0.0000067 0.0000047 x x x 0.06

FtoD forest to deforested, RtoD regeneration to deforested, DtoR deforested to regeneration; out of these, the number of times the mean of

a parameter was found to be positive (given in % of the number before); average and SE of the values of the parameters in the best models for

each land cover transition

Fig. 7 Perfect match (%)

results obtained with the 40

modelling procedures by

comparing land-cover change

predicted and observed between

model’s year of calibration and

validation year (total number of

validations made equals 270,

more than the number of models

because a single model can be

validated in several years)
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2011. However, this decline in the area of primary forest

has slowed down since the mid-2000s, which is probably

due to a lack of good quality wood in the remaining pri-

mary forest patches that has led to a reduction in logging

activity (Miranda et al. 1999), and thus a reduction in the

rate at which forest is made accessible for farming. In

addition, the remaining primary forest in 2011 is almost

entirely sited within protected areas where logging and any

other land use commonly found outside these areas such as

croplands is strictly forbidden.

The analyses of the three LCC transition types can be

interpreted as examining the actions of different LCC

processes. Loggers, in general, are facilitators and maybe

catalysts of deforestation in some settings but rarely con-

vert forest to other uses, therefore, we associate the tran-

sition FtoD to the establishment of new farms. By contrast,

well established farming activities are better represented by

the transition RtoD, where there is no primary forest but

regenerated forests which get routinely deforested as part

of crop rotation and fallow land practices. The last transi-

tion (DtoR) can mainly be assumed to represent the process

of land abandonment by farmers since no formal refores-

tation program has been implemented in the region.

Deforestation is still an ongoing process in the region,

but the forest that is being cleared is more typically

regeneration, areas that have been deforested at least once

in the past. This pattern suggests that the main deforesta-

tion agents in the region are now well established farmers

rather than loggers followed by new farmers (new

colonists), and that the balance between regeneration and

deforested land is maintained by farmers temporarily

abandoning pastures and allowing regeneration to estab-

lish, before re-clearing the land in a cycle designed to

maintain soil fertility in these nutrient-poor landscapes

(Smith et al. 1999). The positive value found for the

parameter associated with the frequency of clearance

(Fig. 6h) and the fact that this value gets higher through

time add support to this result by suggesting that areas that

have been cleared once in the past are more likely to get

cleared again.

Our study is the first to formally and statistically analyse

three decades of model parameterisation associated with

multiple land cover transitions in the Brazilian Amazon.

Some of our results confirm well known tendencies. For

example, in both transitions that lead to deforestation,

forest and regeneration areas next to already deforested

areas were confirmed to be more likely to be deforested in

the near future (Fig. 6b), with spatial contagion being one

of the most important factors in determining the rate and

location of LCC (Rosa et al. 2013). However, we found

that in the transition that predicts regeneration this pattern

was less evident suggesting that the process of regeneration

does not follow a contagious process as strongly as

deforestation does, perhaps reflecting spontaneous rather

than planned activities. Although this pattern will be found

throughout the Amazon, where large areas of land have

been deforested and later abandoned (Galford et al. 2013),

there are other regions of the Amazon where well planned

Table 2 Statistical analysis of

perfect match results for the 40

modelling procedures, when

compared to observed land

cover in the year being

validated, as a function of initial

calibration year (Initial year),

the length of the time transition

being used to calibrate the

model (Transition length), the

model time step being validated

(Time step) and finally the year

being validated (Validation

year)

Variable Degrees of

freedom

Sum of

squares

Mean sum of

squares

F value P value

Initial Year 1 10,270 10,270 185.166 \0.001

Transition length 1 7 7 0.119 0.731

Time step 1 118 188 2.121 0.147

Validation year 1 223 223 4.018 0.046

Initial Year 9 Transition length 1 657 657 11.840 \0.001

Initial Year 9 Time step 1 4,280 4,280 77.179 \0.001

Initial Year 9 Validation year 1 15 15 0.264 0.608

Transition length 9 Validation year 1 1 1 0.022 0.882

Time step 9 Validation year 1 4 4 0.072 0.788

Initial year 9 Transition length 9 Time

Step

1 224 224 4.036 0.046

Initial year 9 Transition

length 9 Validation year

1 3 3 0.048 0.828

Initial year 9 Time step 9 Validation

year

1 168 168 3.022 0.084

Transition length 9 Time

step 9 Validation year

1 158 158 2.842 0.093

Initial year 9 Transition length 9 Time

step 9 Validation year

1 14 14 0.255 0.614

Residuals 192 10,649 55
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regeneration programs have been linked to agriculture

activities such as agro-forestry (Browder et al. 2005),

which might exhibit a more contagious progression of

regeneration.

The role of roads in Amazon deforestation has been

highlighted many times in past studies (Brandão and Souza

2006; Nepstad et al. 2001; Pfaff et al. 2007) and our study

found similar results. What is interesting to note is the

marked difference between land cover transitions (Fig. 6c),

with the road effect being much stronger for the defores-

tation of primary rather than regeneration forest, and land

abandonment tending to occur far from roads. In the study

area there are two main roads which were built by the

government as part of the settlement program in the 1980s.

However, the majority of roads in the study region are

unofficial roads, which are usually built by logging com-

panies to have access to the forest to harvest the wood

(Arima et al. 2005), before the area is replaced by agri-

cultural land (Brandão and Souza 2006). These roads are

then used by farmers to transport their goods to sell in the

city markets. As such deforestation tend to happen closer to

these roads, because farmers take advantage of these roads,

but their decisions about where to deforest are also medi-

ated by other factors such as soil fertility (Escada et al.

2005).

Protected areas have a strong preventive effect on

deforestation in the Brazilian Amazon (Nepstad et al.

2006a), and we found that this effect strengthened through

time as the remnant forest was progressively restricted to

protected areas (Fig. 6f). Protected areas have only a lim-

ited role in preventing the deforestation of regeneration,

largely because regeneration is mainly located outside of

protected areas, where the great majority (90 %) of

deforestation occurs. Although deforestation is illegal

inside protected areas, 10 % of non-forest areas in 2011 in

the study region were located inside protected areas.

Land abandonment (DtoR) tended to happen more

inside protected areas than outside, which suggests that in

our study area no real effort is being made to let the

deforested area recover to a state closer to the original

forest outside these protected areas. As such, although

forest cover seems to be improving inside protected areas,

these might become very isolated and their future can be

undermined (Ribeiro et al. 2006). Fortunately, there are

some regions of the Amazon, even within the heavy

depleted state of Rondônia, where agriculture activities and

forest conservation have been taking place side by side

(Summers et al. 2004). As such, in these regions we would

expect a higher link between regeneration and settlements

and/or roads than the one we found in our study site.

The temporal analysis on model parameters revealed

some degree of variation within time transitions, but for the

majority of the parameters no significant trend through

time. This lack of variability can partially be explained by

the fact that some of these variables simply do not change

through time (such as the rivers) as it does not change their

relation with the land cover process being modelled. For

others, such as roads, it should be expected that the esti-

mated coefficients will have low variability with a closest

fit in the time where roads and land use corresponded to

each other and deviate from it as time moves away from

this point in time. However, due to lack of data, we were

unable to update the road map annually. This most likely

affects the results found for the parameter associated with

this variable.

The relatively constancy in the parameter associated with

human settlements is potentially limited by the fact that there

is only one settlement in our study area. As it is well known

that settlements can strongly influence landscape change in

the Amazon (Brandao and Souza Jr. 2006), settlements

should not be assumed to be constant in the models. Their

impact on the landscape is not only about the number of

people that live in it, but also their distribution. Although no

new settlements were created, the population of Machadinho

d’Oeste followed the Amazon-wide trend of first expansion

(73, 82 and 50 % raise from 1991 to 1996 in total, rural and

urban population) and later concentration in towns and along

roads (a contraction of 1 % in population from 2007 to 2010)

(IBGE 2011). However, in the *30 years the database

covers, and given the small scale size of our study, we were

unable to test for this hypothesis due to lack of spatial data on

the population distribution in the region.

There were, however, some parameters that exhibited

strong temporal trends, such as protected areas, which

became increasingly more important in preventing defor-

estation of primary forests, while the landscape changes

and the forest outside protected areas gets heavily degra-

ded. Also the contagion effect of deforestation (RtoD

transition) and regeneration (DtoR transition) became

increasingly more important, showing how LCC strongly

follows a contagion pattern. The changes found in the

parameter associated with frequency of clearance show that

when large areas of primary forest are unprotected, people

tend to deforest those areas. However, as the landscape

evolves and these forests become scarce (and constrained

to protected areas), people opt to re-deforest areas that have

already been cleared.

The temporal variability found in parameter estimates

needs to be incorporated into models, although this repre-

sents a considerable challenge to a modelling discipline

that rarely quantifies the uncertainty around their predic-

tions (Rosa et al. 2013, 2014). For parameters that exhibit

non-directional variability, this might be possible by run-

ning stochastic models that sample parameter values from

the statistical distributions of parameter estimates rather

than using the ‘best’ estimate alone (Rosa et al. 2013).
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Parameters that exhibit directional trends, however, will

require more extensive time series data to allow that trend

to be quantified. The next generation of LCC models will

need to embed those trends within simulations in order to

allow the processes determining LCC to change through

time and exert their influence on model predictions.

Further, the accuracy of LCC models was heavily

dependent on the year in which models were calibrated

(Table 2), suggesting that a widespread reliance on single

calibration time periods in the LCC modelling literature

(e.g. Maeda et al. 2011; Michalski et al. 2008; Yanai et al.

2012) may be providing biased predictions of future LCC.

The reason for this dependence of model accuracy on cal-

ibration year is the non-stationarity of the processes

underlying LCC. We found that models calibrated in the

1980s, soon after the establishment of Machadinho d’Oeste,

were almost invariably poor at predicting current LCC,

whereas those calibrated from the mid-1990s and later were

generally much better. This suggests that accurate predic-

tions of future landscapes cannot be made using maps from

a long time in the past as model inputs, because the pro-

cesses determining LCC are dynamic and change through

time. As such, parameters included in the model that predict

future landscapes should allow variation which would

reflect this change rather than being kept constant assuming

that the same process of LCC perpetuates through time.

The calibration year was the most important factor

influencing the performance of the LCC models; however,

once this was controlled the time step and the transition

length became important as well. This suggests that after

choosing the most recent land cover maps for modelling

future landscape alterations, we achieved higher values of

perfect match when we validated our annual predictions

against land cover maps from a date closer to the one

modelled (shorter time step). The validation results tended

to get worse (or more uncertain) when we validated our

predictions against a map from a distant date in time (larger

time step). Finally, a similar result was found for the

transition length, meaning that after choosing the most

recent maps of land cover for modelling, a shorter transi-

tion length led to better model performance rather than a

longer transition length. This result can be counterintuitive

as people usually think that a larger transition length might

be best for model calibration because a short transition

length might not be representative of the dynamics of land

cover in the region, rather it might represent a spontaneous

event. However, as we show in this study, a long transition

for a long-past period will likely generate a poor model

because the processes of LCC are dynamic through time,

and the aspects of it being captured by a model calibrated

in the past (either with a long or short transition length) will

not be able to capture new processes occurring in the

landscape. Our results suggest it is better to use a short

transition length from a recent calibration period than it is

to rely on a long transition period from the past. However,

the pattern was found to be less strong than the one found

for the time step and, as such, more work needs to be done

in order to further analyse this relationship.

Conclusions

LCC models are used in many studies of human impacts on

the environment, but knowing how well these models pre-

dict observed changes in the landscape is still a challenge.

We used nearly three decades of LCC maps to determine

that parameters associated with the different drivers of

change were selected differently for each land cover tran-

sition; and these transitions, which varied significantly

through time, could be associated with different landscape

change activities. In addition, our model validations

revealed a strong importance of calibration year and vali-

dation year in determining the predictive power of the

model. Furthermore, some of the parameters associated

with different LCC drivers exhibited strong directional

trends. As a result, we suggest that the next generation of

LCC models may need to incorporate temporal variability

in the parameters associated to the drivers of changes in

order to allow the processes determining LCC to change

through time and exert their influence on model predictions.
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