506 research outputs found

    Rendering of Pressure and Textures Using Wearable Haptics in Immersive VR Environments

    Get PDF
    Haptic systems have only recently started to be designed with wearability in mind. Compact, unobtrusive, inexpensive, easy-to-wear, and lightweight haptic devices enable researchers to provide compelling touch sensations to multiple parts of the body, significantly increasing the applicability of haptics in many fields, such as robotics, rehabilitation, gaming, and immersive systems. In this respect, wearable haptics has a great potential in the fields of virtual and augmented reality. Being able to touch virtual objects in a wearable and unobtrusive way may indeed open new exciting avenues for the fields of haptics and VR. This work presents a novel wearable haptic system for immersive virtual reality experiences. It conveys the sensation of touching objects made of different materials, rendering pressure and texture stimuli through a moving platform and a vibrotactile abbrv-doi-hyperref-narrowmotor. The device is composed of two platforms: one placed on the nail side of the finger and one in contact with the finger pad, connected by three cables. One small servomotor controls the length of the cables, moving the platform towards or away from the fingertip. One voice coil actuator, embedded in the platform, provides vibrotactile stimuli to the user

    A Mathematical Model of the Pneumatic Force Sensor for Robot-assisted Surgery

    Get PDF
    Restoring the sense of touch in robotic surgery is an emerging need several researchers tried to address. In this paper, we focused on the slave side proposing a pneumatic sensor to estimate contact forces occurring during the interaction between surgical instruments and anatomical areas. It consists of a tiny pneumatic balloon, which, after being inflated, appears near the tip of the instrument during the measurement phase only. This paper presents a mathematical method relating the intensity of the contact force to the variation of pressure inside the balloon. The latter was modeled as a spherical elastic membrane, whose behavior during contact was characterized taking into account both the deformation of the membrane and the compression of the contained gas. Geometrical considerations combined with an energetic approach allowed us to compute the force of interest. The effectiveness of our sensing device has been confirmed by experimental results, based on comparison with a high-performance commercial force sensor

    A new approach to the chap LQ regulator exploiting the geometric properties of the Hamiltonian system

    Get PDF
    The cheap LQ regulator is reinterpreted as an output nulling problem which is a basic problem of the geometric control theory. In fact, solving the LQ regulator problem is equivalent to keep the output of the related Hamiltonian system identically zero. The solution lies on a controlled invariant subspace whose dimension is characterized in terms of the minimal conditioned invariant of the original system, and the optimal feedback gain is computed as the friend matrix of the resolving subspace. This study yields a new computational framework for the cheap LQ regulator, relying only on the very basic and simple tools of the geometric approach, namely the algorithms for controlled and conditioned invariant subspaces and invariant zeros

    The Automatic Control Telelab: a remote control engineering laboratory

    Get PDF
    Describes the realization of a remote laboratory of automatic control developed at the University of Siena. The Automatic Control Telelab (ACT) allows the on-line interaction between remote users and a set of remote physical processes through the Internet. The key feature of this project is the user-defined controller facility. The remote user can design his/her own controller through the well-known Simulink environment. The overall architecture of the Automatic Control Telelaboratory has been designed with the goal of simplifying the upgrading procedure and the procedures to add new experiments

    On the Use of Magnets to Robustify the Motion Control of Soft Hands

    Get PDF
    In this letter, we propose a physics-based framework to exploit magnets in robotic manipulation. More specifically, we suggest equipping soft and underactuated hands with magnetic elements, which can generate a magnetic actuation able to synergistically interact with tendon-driven and pneumatic actuations, engendering a complementarity that enriches the capabilities of the actuation system. Magnetic elements can act as additional Degrees of Actuation (DoAs), robustifying the motion control of the device and augmenting the hand manipulation capabilities. We investigate the interaction of a soft hand with itself for enriching possible hand shaping, and the interaction of the hand with the environment for enriching possible grasping capabilities. Physics laws and notions reported in the manuscript can be used as a guidance for DoAs augmentation and can provide tools for the design of novel soft hands

    Command Acknowledge through Tactile Feedback Improves the Usability of an EMG-based Interface for the Frontalis Muscle

    Get PDF
    This work presents a study on the effectiveness of tactile feedback for the acknowledgement of a correct command detection in an EMG-based interface for the frontalis muscle. EMG interfaces are increasingly used in assistive robotics to control robots exploiting the repeatability and robustness of the electromyographic signal. However, in many application a feedback about the correct detection of an input is often missed and the user has to wait for the device motion in order to understand if his/her will has been correctly detected by the system. We demonstrate with a user study involving fifteen subjects, that a simple vibrotactile feedback can reduce the muscular effort and the time needed to execute a sequence of action commanded by an EMG device. As a case study, an EMG interface for the frontalis muscle has been used, however proposed results could be extended to EMG interfaces designed for other muscles, e.g., for prosthesis or exoskeleton control

    A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics

    Get PDF
    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human–robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions

    Aerial tele-manipulation with passive tool via parallel position/force control

    Get PDF
    This paper addresses the problem of unilateral contact interaction by an under-actuated quadrotor UAV equipped with a passive tool in a bilateral teleoperation scheme. To solve the challenging control problem of force regulation in contact interaction while maintaining flight stability and keeping the contact, we use a parallel position/force control method, commensurate to the system dynamics and constraints in which using the compliant structure of the end-effector the rotational degrees of freedom are also utilized to attain a broader range of feasible forces. In a bilateral teleoperation framework, the proposed control method regulates the aerial manipulator position in free flight and the applied force in contact interaction. On the master side, the human operator is provided with force haptic feedback to enhance his/her situational awareness. The validity of the theory and efficacy of the solution are shown by experimental results. This control architecture, integrated with a suitable perception/localization pipeline, could be used to perform outdoor aerial teleoperation tasks in hazardous and/or remote sites of interest
    corecore