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Abstract

The cheap LQ regulator is reinterpreted as an output nulling problem which is a basic
problem of the geometric control theory. In fact, solving the LQ regulator problem is
equivalent to keep the output of the related Hamiltonian system identically zero. The
solution lies on a controlled invariant subspace whose dimension is characterized in terms
of the minimal conditioned invariant of the original system, and the optimal feedback
gain is computed as the friend matrix of the resolving subspace. This study yields a
new computational framework for the cheap LQ regulator, relying only on the very basic
and simple tools of the geometric approach, namely the algorithms for controlled and

conditioned invariant subspaces and invariant zeros.

1 Introduction

The infinite-horizon linear quadratic (LQ) regulator problem is a basic and deeply investigated

topic in control theory. It is well known that the solution strongly depends on the matrix
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weighting the input in the cost function, traditionally denoted by R. When R is positive
definite, the problem is said to be regular (see e.g. [1, 8]), when R is positive semidefinite,
the problem is called singular, and cheap when R is zero. The singular and cheap cases have
been treated within the framework of geometric control theory, see for example [6, 19, 13] and
references therein. In particular, in [6] and [19] it was proved that an optimal solution of the
singular problem exists for all initial conditions if the class of allowable controls is extended
to include distributions. The approach presented in [13] is based on a detailed analysis of the
structure of both singular and cheap problems (where the latter is treated as the limiting case
of the former) carried out by means of the so-called special coordinate basis. Valuable results
on this issue have also been obtained in [14, 17, 16, 15], where the solution of the singular LQ
problems is based on linear matrix inequalities.

This paper proposes a new perspective for the solution of the cheap LQ regulator. The
keystone is the interpretation of the LQ regulator as an output nulling problem referred to
the Hamiltonian system. This new approach enables to straightforwardly solve the cheap LQ
regulator by only using the very basic and computationally efficient tools of the geometric
approach, namely the algorithms for controlled and conditioned invariance and invariant ze-
ros, [2, 4, 18, 20]. In particular, by writing the conditions for optimality in the form of the
Hamiltonian system, whose output has to be maintained identically equal to zero, the cheap
LQ problem reduces to finding a state feedback such that the state-costate trajectory entirely
lies on an internally stabilizable output nulling subspace of the Hamiltonian system. In the
framework of the geometric approach, this is a standard unknown-input decoupling problem.

This work is intended to be the counterpart of [10] for the continuous time. The continuous
time case is different from the discrete time one. Significant differences can be found for the
existence and the structural properties of the solutions. Indeed, in the discrete time case a
solution of the cheap problem exists for all initial states whereas in the continuous time the
optimal state-feedback does not exist for any initial condition, so that significant issues related
to existence of optimal solutions arise. Solving the cheap LQ problem by directly referring to
the Hamiltonian system provides a very simple characterization of the subspace of all admissible
initial conditions such that a state-feedback solution exists.

After stating the problem in Section 2 and recalling the mathematical background in Section
3, a novel structural analysis on the geometric properties of the Hamiltonian system is carried
out in Section 4. In Section 5 the dimension of the resolving subspace is given as a function
of the minimal conditioned invariant of the controlled system and it is then shown how to

compute the optimal feedback gain. Concluding remarks are provided in Section 6.

Notation. The symbol R™*™ is used to denote the space of n x m real constant matrices. The



image and the null-space of matrix M € R"*™ are respectively denoted by im M and ker M.
Given a subspace ) of R”, the symbol M~! Y stands for the inverse image of ) with respect
to the linear transformation M, while Y+ represents the orthogonal complement of ). Denote
by MT and by MT the transpose and the Moore-Penrose pseudo-inverse of M, respectively;
since the identity (M~1)T = (M7)~! holds, the symbol M~ is used concisely. The symbol I,
will stand for the d x d identity matrix. Finally, the symbol N denotes the set of non-negative

integer numbers.

2 Statement of the Problem

Consider the linear time-invariant system

(t) = Ax(t)+ Bu(t), x(0)= zo,
y(t) = Ca(t),

where, for all £>0, x(t) € R" is the state, u(t) € R™ is the control input and y(¢) € R? is the

(1)

output, A, B and C are real constant matrices of proper sizes. With no loss of generality
it is assumed that B has linearly independent columns and C' has linearly independent rows.
System (1) is briefly referred to as the triple (A, B, ('), and is concisely denoted by . We

make the following standing assumptions on >:

(A1) the pair (A, B) is stabilizable;

(A2) ¥ has no invariant zeros on the imaginary axis.

The cheap LQ problem considered in this paper can be formulated as follows.

Problem 2.1 Determine the subspace L of initial conditions of ¥ for which a matriv K €

R™*™ exists such that:
(i) the closed-loop matriz A — B K is stable;

(i1) for all xo € L, the state trajectory generated by (1) with initial state x(0) = x¢ and with

the input u(t) = —K x(t) minimizes the quadratic cost function
Lt L% T
J = 5/ Y (t)y(t)dt = 5/ @ (t) C*C x(t)dt.
0 0

For xg € L, determine K such that (i)-(ii) are satisfied.



Problem 2.1 is usually referred to as a cheap LQ problem, since in the performance index
J the input function is not explicitly weighted. Differently from other approaches, here the
optimal control is sought within the class of static state feedback inputs, so that optimal
solutions containing distributions are ruled out. As will become clear in Section 4, this poses
a problem of existence of optimal solutions to Problem 2.1. It is also worth emphasizing
that when Problem 2.1 admits solutions, the optimal feedback matrix does not depend on the

particular initial state in £. This issue is discussed in Section 5.

3 Geometric Background

The geometric setting developed here requires the following notations: V5, stands for the largest
(A, im B)-controlled invariant subspace of the triple (A, B, (') contained in the null-space of C,
which is also denoted by maxV (A,im B, ker C). Recall that V5 is the subspace of all initial
states kg € R™ of (1) for which an input function exists such that the corresponding output
is identically zero, and can be computed as the last term of the monotonically non-increasing

sequence of subspaces

V() = ker C'

(2)
Vi=kerCNA Vi, +imB)  i=1,...,k,

where the integer k£ <n — 1 is determined by the condition V; 1 = Vi(= V%), see e.g. [4, p.210].
The symbol S5 stands for the smallest (A, ker C')-conditioned invariant subspace containing
the image of B, which is denoted by min S (A, ker C,im B), and can be computed as the last

term of the monotonically non-decreasing sequence
S() =imB
. . (3)
S;=imB+ A(S;_1 Nker () 1=1,...,k,

where now the integer £ <n — 1 is determined by the condition S; 11 =S;(= &%), see [4, p.209)].
For a detailed discussion on controlled and conditioned invariant subspaces we refer to the
textbooks [4, 18, 20].
For the reader’s convenience, the notion and related geometric properties of left and right-
invertibility are briefly recalled, see [4, p.237]| and [18, p.189].

Property 3.1 The following statements are equivalent:
(i) X is left-invertible;

(ii) V&N Ss=1{0};



(iii) B=1V;={0}.

Roughly speaking, if ¥ is not left-invertible, the input function corresponding to a given re-
sponse (obtained with zero initial condition) can only be determined modulo B~ V§ CR™,
see [3, Theorem 3]. The subspace B~' Vs is therefore called input functional unobservability

subspace. Dually, the following property holds.
Property 3.2 The following statements are equivalent:
(i) X is right-invertible;
(ii) V& + S5 =R";
(i1i) C Sy =RP.

If ¥ is not right-invertible, the output function can be imposed modulo any complement of the
subspace C' S5, CRP| see [3, Theorem 4]. Thus, the subspace C' S5 is called output functional

reachability subspace.

Denote by X7 the dual of system X, described by the triple (AT, CT, BT).

Property 3.3 System X is left-invertible (respectively right-invertible) if and only if its dual
T is right-invertible (respectively left-invertible).

The proof of the former follows from the well known identities of the geometric approach, see
[4, p.209]:

Vi =(Sor)h, Sh=(Var) (4)

Recall that, given a friend F' of V5, i.e. a matrix such that (A+ B F) V& C V5, the eigenvalues
of A+ B F restricted to V5, are split into two sets. The eigenvalues of A+ B F' which are
restricted to V5, NSs, are all freely assignable by a suitable choice of F'. The eigenvalues of
A+ B F restricted to the quotient V5&/V§ NS5, are fixed for any friend of V¥, and are called
invariant zeros of 3. If all the invariant zeros of ¥ have strictly negative real part, ¥ is said
to be minimum phase and Vs, is said to be internally stabilizable. The subspace RS, :=V5 NS
can be interpreted as the subspace of states that can be reached from the origin with state
trajectories all contained in V§ (hence invisible at the output), so that it is often referred to
as the reachable subspace on V%, see [11]. By virtue of Property 3.1, if ¥ is left-invertible, the
set of invariant zeros reduces to the set of eigenvalues of A+ B F' restricted to Vs;.

For a detailed analysis of the internal and external eigenstructure of a controlled invariant
subspace we refer to [4, pp.217-222] and [18, pp.89-96].



Notice that the dynamical system whose evolution is described by (1) can be written back-

wards in time as

2(t) = —Az(t) — Bu(t),
y(t) = Cz(t).

The triple (—A, —B,C), here denoted by ¥7!, is therefore referred to as the time-reversed
system associated with Y. Note that

* *
VE - »-1

5
s s (5)

since the definitions of V5, and &5 do not depend on the sign of the matrices A and B. Hence,

the following property holds.

Property 3.4 System X is left (right) invertible if and only if its time-reversed representation
Y71 ds left (right) invertible.

4 A Geometric Insight into the Structure of the Hamil-

tonian System

Recall that the optimal state trajectory and control law for Problem 2.1 satisfy the following

equations
(t) = Ax(t) + Bul(t), (6)
ANt) = =CTC x(t) — AT \(2), (7)
BT \(t) =0, (8)

obtained by extending the state z(¢) of system (1) with the costate function A(¢t) € R™ (¢ >0).
Equations (6-8) can be obtained from the computation of the derivatives of the Hamiltonian
function with respect to z(t), A(t) and u(t), see e.g. [8, pp.131-133].

A fundamental observation for the approach proposed in this paper is that (6-8) can be

written in the compact form:

i)y [ A o0 x(t) B @
At | | —CcTo —AT | | A®) 0"
) (9)
S — R EIONES
gty = o B A(t)]—o,




and that equation (9) can be regarded as a 2n order system whose output is identically zero.
The matrices in (9) are respectively denoted by the symbols 21, B and 6, while the triple
(g, §, 6) is concisely denoted by i, and is referred to as the Hamiltonian system. From the
structure of the Hamiltonian system, which along with the boundary equations represents a
set of necessary and sufficient conditions for optimality, it is clear that Problem 2.1 can be
reformulated as the problem of finding the control law maintaining ¢(¢) =0 for all £ > 0 for the
assigned initial condition z(0) =z, and such that the corresponding state trajectory converges
to the origin as t approaches infinity. Clearly, this aim can be achieved if and only if the initial
condition xq is such that an initial value of the costate A\g:= A(0) exists so that [ig] belongs
to an internally stabilizable (ﬁ, im B )-controlled invariant contained in the null-space of C.
The purpose of this section is to provide a characterization of the geometric structure of
the Hamiltonian system (9). In particular, the following lemma provides an important char-
acterization of the Hamiltonian system in terms of left and right-invertibility. The further

assumption of left-invertibility of ¥ is technical in nature and will be removed in Section 5.1.

Lemma 4.1 If X is left-invertible, the Hamiltonian system S is both left and right-invertible.

Proof: First, note that S} is the series connection of ¥ and the time-reversed representa-
tion of the dual of ¥, henceforth denoted by the symbol =7, and representing the triple
(—AT, —CT, BT). Consider Figure 1. As a consequence of Properties 3.3 and 3.4, it follows

u(t) y(1) ()
by »-r

AN

Y

Figure 1: Inner block-structure of the Hamiltonian system

that ¥~7 is right-invertible. The block-structure of the Hamiltonian system outlined in Fig-
ure 1 matches exactly that described in [10], even if the inner structures of ¥ and X7 in
the continuous and discrete cases are different. Hence, the proof of the right-invertibility of 5
can be carried out by employing the same arguments used in [10, Lemma 1], which are based
on the fact that the input reachability subspace of ¥ and the orthogonal complement of the

input unobservability subspace of ¥~7 are equal'. Finally, a simple computation shows that

'Recall that if M € R**™ is a linear map and Y is a subspace of R", the following equation holds ([4,
Property 3.1-3, p.128]):
MT yJ_ _ (M_l y)J_



the time-reversed representation of the Hamiltonian system S1 and its dual &7 are linearly
equivalent, i.e., the triple (—/Al, —B, 6) is obtained from the triple (fAlT, CT, LA?T) via a change
of coordinates in R?" given by the matrix
0 I,
~I, 0|

As a result, Y71 and ¥ are left-invertible, since such is 7. [
In the following, the symbols V5 :=max ) (E, im E, ker 6) and 8% :=min S (E, ker 6, im E)

will be used, consistently with the notation previously introduced.

T =

Corollary 4.1 Let ¥ be left-invertible. The set of invariant zeros of the Hamiltonian system

Y3 is mirrored with respect to the imaginary azis, and is devoid of zeros on the imaginary axis.

Proof: First, let us show that the invariant zeros of S are in pairs (z,—z). Let z be an
invariant zero of the Hamiltonian system i, i.e., it is an eigenvalue of (2+ BF ) restricted to
Vs, where F is a friend of V2, since, owing to Lemma 4.1, S is left-invertible. It follows that z
is an invariant zero of iT, hence it is also an invariant zero of i_l, since in the proof of Lemma
4.1 it was shown that $7 and S are linearly equivalent up to a change of basis. However,
and the ecigenvalues of (A+ B F) and those of (—A — B F) are

opposite, it is found that —z is an invariant zero of 5. Now we show that the Hamiltonian

since owing to (5) VE=V%
system 5 has no invariant zeros on the imaginary axis. Suppose by contradiction that zg = j wy
is a zero of the Hamiltonian system i; by definition of zero, it follows that for a suitable initial
condition [ig} of the Hamiltonian system, the input u(t) = e*! = eJ*0! gives rise to an
indentically zero output g, which means that the corresponding state trajectory is optimal for
a cheap problem with z(0) = zy, [9]. However, since z, cannot be a zero of the original system
¥ in view of Assumption (A2), the same control u(t) = e*! = 7“0 gives rise to a non-zero
output of the system 3. More precisely, y(t) = yoe/“°! for a suitable yo € R? \ {0}, [21,
Lemma 3.36]. When wy = 0, this output is constant. When wy # 0, since —z; is a zero of the
Hamiltonian system as well in view of the first part of the proof, then an input u(¢) = sin(wg t)
gives rise to the output y(t) = yo sin(wot + ¢o). In both cases, clearly [; 4y (¢) y(t) dt is not
finite. On the other hand, a finite cost can always be achieved in view of Assumption (A1), so

that this solution would not be optimal. [ |

Corollary 4.2 Let 3 be left-invertible. The internal eigenvalues of VS are the invariant zeros
of the Hamiltonian system 5. These are in pairs of the type (z,—z). This set of zeros includes

the invariant zeros of 3.



Proof: The proof follows from Lemma 4.1, which ensures that V% has no arbitrarily assignable
poles, and from Corollary 4.1. The fact that the set of zeros of S includes the invariant zeros

of ¥ comes from the block structure of Figure 1. [ |

Now we define a new system ¥ that — as will become clear in Lemmas 4.2 and 4.3 — plays a
key role in providing a characterization of the geometric structure of the Hamiltonian system.
Consider a basis matrix U of the output functional reachability subspace C'Sy, C R? of ¥
Let the symbol 3 represent the system associated with the triple (A7, CT U, BT). System ¥ is
similar in structure to the dual system X7, but is such that its input actions are restricted to
belonging to the output functional reachability subspace of . Moreover, differently from %7,

which is only right-invertible, now it is shown that 3 is both left and right-invertible.

*

Lemma 4.2 System X is left and right-invertible, and Vi=Vi_r.

Proof: The left-invertibility can be proved as follows. Let € be a non-null vector of (CT U)~! Vs
where Vi :=maxV (AT CT C 8%, ker BT). Hence, CTU € Vsi. As a consequence, a non-null
vector & :=U £ exists such that & € C~T Vi =(C S%)*. However, since £ lies in the range of
U as well, it follows that £ =0, so that £ =0 since ker U = {0}, and, owing to Property 3.1,
¥ is left-invertible. Now, we show that Vi =V _r. Since the set of control actions of ¥ is
restricted with respect to that of 7, by definition the set of output-nulling subspaces of &
contains the set of output-nulling suspaces of ¥7. Hence, in particular, Vs € Vir. We only
need to prove that the opposite inclusion holds as well, i.e., V& 2 V7. To this end, it suffices

to show that V§; is output-nulling of %. Consider the identity
im O = CTR = 7 (€T Vi) @ (€7 Vi)
= (Vir Nnim C7) + CT (O Vir ).
By adding V5.r to both sides of the latter it easily follows that
Vir +1imCT = Vir + CT(C7TVir )t = Vir + CT C S5, (10)

Since ATV C Vir +1mC7 as Vi, is controlled invariant for X7, from (10) it also follows
that ATVET C Vir + CT C 8 which means that Vi.r is controlled invariant for ¥, as well.
As a result, Vi =V, so that Vi =V _+ by (5). Now, denoting by (Vi)ieN and by (Vi )ieN
the sequences of subspaces (2) referred to X~ and ¥, respectively, we show by induction that
V; =V, for all i <n — 1. The identity holds for i =0 since V, =V, =ker BT. Suppose V; =V

for any k> 0. Since the sequence (2) is monotonically non-decreasing,

Ve D VE=Vir 2 Vi NimCT = (S5 Nim 7 = €T (C' 8)*.



Hence, it is now found that

Vit = ker BTN AT (Y, +im C7T)
— ker BTN AT (T/k +CTOSE+ O (ng)l)
—kerBTnAT (T}k +cT CS;;) = fik“,

since V, 2 CT (C'S%)t. Finally, in order to prove that X is right-invertible, we show by in-
duction that S;+V;=8; + V) for all i <n — 1. Since S contains im B by (3), it is found that
CT (C 8%)*+ Cker BT. We therefore find

80+V0 = imC’T+kerBT
= CT(C8E) +CT (CSE)* +ker BT
= CT (CS;) + ker BT = SQ + ]_)0.

Let now S, + V, =S + Vs, for a given k£ > 0. Consider the trivial identity
ker BT = (S, Nker BY) + ker B = (S, Nker B”) + ker BT.
By applying AT to the latter, by the set of inclusions
AT ker BT C AT (ker BT +imCT) CV, C Vi VE > 1,

and since as already observed Vi, 1=V 41 and V; = V; D CT(C 8%)* for all i > 0, it follows
that

Skt + Vig1 = imCT + AT (S Nker BY) + Vi =
- CT CS;: ‘I‘ AT (Sk; ﬂ kel“ BT) + Vk_;,.lSk_;,.l + ]_}k_;’_l.

In particular, it follows that ¥ is right-invertible since such is . |

Let r be the dimension of S5.. As a consequence of Lemma 4.2, we get
dim Vi = dim V5, ¢ = dim Vi = dim(S&)" =n — 7.
However, since V5 @ S§ =R", it follows that
dim S5 = n — dim V§, = 7. (11)

The following fundamental result relates the structure of the previously defined system ¥
with that of the Hamiltonian system 5. In particular, the structure and the dimension of
the smallest conditioned invariant subspace of 5 containing the image of B is expressed as a

function of the structure and dimension of the smallest conditioned invariants of ¥ and 3.



Lemma 4.3 Let X be left-invertible, and let r be the dimension of Ss;. Hence, the following
equalities hold:

dimS3 = 2, (12)
dimVg =2 (n—1). (13)

Proof: Denote by S and by S two basis matrices for S and S5, respectively. Note that
the smallest conditioned invariant subspace of the Hamiltonian system S% has the following

structure:
S X
S =1im N 14
: [ ] )

In order to prove (14), recall that given a zero initial condition x(0) =0, the generic subspace
S; of the sequence (SZ- )Z .
through a control function u(t) to ¥ (0%), the i-th derivative of the state, while yielding

in (3) can be interpreted as the set of values that can be assigned

y®(07) =0 for all k <i— 1. This interpretation of the subspaces S; is the continuous counter-
part of that given by Lemma 3 in [10] in the discrete case. Now we prove that the subspace
on the right-hand side of (14) is contained in 8. First, we show that

im[i]QS%.

Refer to Figure 1, and let # €S, The function u(t) ensuring ™ (07) =% and y* =0 for
all k<n—1 is such that A+ (0*)=0 and §®(0*)=0 for all k<n—1. In particular
AP () =0. If (SA’, )ieN is the sequence of subspaces in the extended state-space of the Hamil-

tonian system converging to Sz, it follows that [z] €8,C S, =S8Z. Now, we prove that a
matrix L exists such that im [g] CS%. Let S\ES%. Hence, a y(t) on C' S exists such that
A™(0F) = X with g®(07) =0 for all k <n — 1. It follows that a u(t) steering the output of  to
y(t) exists as C'Sy; is the output reachability subspace of ¥ and since the geometric condition

for the perfect decoupling
CT(OSE ) CVE=Vsi s

holds [4, p.224]. The value 2™ (0%) =% determined by u(t) is therefore such that

1]-o]t]os

H €S8Z. First let A=0. If & does not belong

N

to S by contradiction, y®(0%)#0 for some k < 2n — 1 gives rise to A2 (0%) #X=0 since

To prove the opposite inclusion, consider [



ker C' =ker CT C. Hence,

I,
S%ﬁim[ ]:im[S].
0 0

If A\#0, a sufficient condition for 7®(07) =0 with k <2n —1 would be X € S5 r. However,
since Y is not right-invertible, the control actions applied to ¥~ can only be imposed on C 8%,
i.e., those that can be effectively produced by a suitable input function u(t). Hence, A Sp
implies that a & € R" exists such that [i] € 8&. As aresult of (11) and (14) it follows that
the dimension of S is 2r, thus yielding (12). Equation (13) is a straightforward consequence

of the left and right-invertibility of the Hamiltonian system. |
Corollary 4.3 Let X be both left and right-invertible. Then
dimVg = 2 dim V.

Proof: The identity follows directly by the left and right-invertibility of 3. |

5 Geometric Solution of the Cheap L(Q) Problem

The following theorem provides a clear characterization of the resolvent controlled invariant
subspace of the Hamiltonian system. Its proof can be easily employed to derive a numerically

implementable algorithm for the solution of the cheap LQ problem.

Theorem 5.1 Let Assumptions (A1) and (A2) hold. If3 is left-invertible, an (n — r)-dimensional
internally stabilizable (A, im B)-controlled invariant subspace Vi contained in kerC' exists such

that all its n —r poles, all unassignable, are strictly stable.

Proof: Since X is supposed to be left-invertible, Lemma 4.1 ensures that V% has no arbitrarily
assignable poles. Moreover, from Corollary 4.1 it follows that the poles of V%, which are the
invariant zeros of the Hamiltonian system I, are pairs of the type (z, —z), hence all stable-
antistable owing to Assumption (A2). This set of zeros includes the invariant zeros of ¥. Since
S is left and right-invertible, the matrix T} := [ T 17" ], where im 7" =Vz and im " :S§,
is a basis matrix of R*". Since V% is an (g, im E)—controlled invariant subspace, a matrix
F € R™* 2" exists such that VS is an (E +BF )-invariant. By performing the extended state-

space basis transformation defined by 77, one obtains the following partitioned structure

MSU X
0 X

)

A\F7T1 = Tl_l (;{"—E )Tl

x2(n—r)

where the eigenvalues of Mgy € R 7) are the poles of V%, all unassignable by virtue

of the left-invertibility of i, i.e., the strictly stable invariant zeros of the Hamiltonian system



and their opposite. Since the subspace of the internal modes of V2 and that of the antistable
ones are disjoint and both (A+ B F)-invariant, a further basis transformation 75 in R?" can
be performed so as to split the stable modes from the antistable ones. The matrix EF 1, that

corresponds to A F.1y, in this new basis has the following structure

MS 0 X
Ap 1, = T2_1 Ap 1 Th 0 My x|,
0 0 x

where the eigenvalues of the two submatrices Mg, My € R~ *(=7) are respectively the
stable and antistable zeros of the Hamiltonian system 5. Hence, the first n —r columns of the
product 17 T define a basis for a controlled invariant subspace which is internally stabilizable,

whose poles are the eigenvalues of Mg. Thus, this subspace is 173. [ |

Lemma 5.1 Let Assumptions (A1) and (A2) hold. Let

Vx
Va

be a basis matrix of 173 with Vy, Vy € R** =) Matriz Vx is full rank.

Proof: By contradiction assume that ker Vy # {0} and let Ny, be a basis matrix of ker Vy,
then

im

C Vr.
VaNvy ]

From the controlled invariance of ]73, one gets
(=CTCVx — ATV} ker Vx C Vpker Vy,

and consequently
—ATVyker Vx C Vyker V. (16)

Since Vg belongs to the null-space of C, it ensues that Viker Vy C ker (BT), and from (16)
the subspace Vjker Vx belongs to the unobservability subspace of =7, which is by definition
the largest AT-invariant subspace contained in the null-space of BT. Moreover, modes of this
invariant subspace are stable since Vg is an internally stable A+ BF invariant. Contradiction
arises from Assumption (A1), which implies that the uncontrollability part of ¥ is stable, or

equivalently that the unobservability subspace of ¥~7 is antistable. [ |



The result given in Lemma 5.1 is similar to the one found for discrete time systems in
[10]. However, while in the discrete case the dimension of Vg equals the dimension of the state
space n, in the continuous case such dimension is n — r, so that here full rankness of Vy does
not imply invertibility of Vy, since Vx is not square in general. This also explains why the
argument employed in [10, Corollary 1] to motivate full rankness of Vx, based on an apriori
knowledge of the existence of optimal solutions for all initial states, could not be exploited here
in the proof of Lemma 5.1.

In the following theorem, it is shown how the solution of the output nulling problem in
the Hamiltonian system enables the solvability condition on the initial state to be expressed
in terms of the projection of the subspace 173 on the state-space of the original system. In
other words, when the initial state is such that an optimal solution exists, then a basis for the
subspace of admissible initial conditions can be used to directly compute the static gain of the
state-feedback.

Differently from the discrete case, where the optimal gain involves the inverse of Vx, here
as aforementioned Vx is not invertible, so that the Moore-Penrose pseudoinverse has to be

used instead of the inverse.

Theorem 5.2 Let X be left-invertible. Let Assumptions (A1) and (A2) hold. Problem 2.1 is
solvable if and only if

T € 1mVy (17)

i.e., if and only if the initial condition xo belongs to the projection of 173 on the state-space R™
whose dimension is n — r. If this is the case, let Fx, Fx € R™>*™ be obtained by partitioning a
friend Fp of Vg as Fp = [ Fx Fy } If condition (17) is met, the state-feedback matriz K

solving Problem 2.1 is given by
K =—(Fx + FA\VAV}), (18)
where V)z representes the Moore-Penrose pseudoinverse of V.

Proof: Necessity and sufficiency of condition (17) can be easily proved by noting that (17)
is equivalent to the existence of a costate initial condition A\g € R™ such that [iz} € )73. The
dimension of im Vx is n — r in view of Lemma 5.1. Owing to Theorem 5.1, an extended state
and costate feedback matrix Fg exists such that the extended state and costate trajectory

obtained by applying the control

:E(t)] (19)



entirely lies on ]73 and converges to the origin as t approaches infinity. Hence, the projection
of the extended state on R™ converges to zero as well. Hence, this is a feedback which steers
the extended state along a stable trajectory evolving in 173. Since x(t) € im Vy, it follows that

the input function can be expressed as the state feedback

u(t)=F — | Fx B ().
(t) RhJ R T (t)
Clearly, the dimension im Vy is n — r owing to Lemma 5.1. |

As is clear from the proof of Theorem 5.2, the optimal static feedback K does not depend on
the particular initial state satisfying (17). Moreover, under the assumption of left-invertibility
of ¥ the optimal control u(t) = —K x(t) is unique, due to the full rankness of Vx. In Section 5.1
it is shown that when the assumption of left-invertibility is removed, the optimal solution to
Problem 2.1 is not unique.

We end this section with a simple formula for the optimal cost as a quadratic form of the

initial state, which extends the very well-known result for the regular case, [1, 8.

Theorem 5.3 Let zyp € R"™ be such that (17) is satisfied. The optimal value of the cost is
J* =2 Vy Vi .

Proof: By using the Hamiltonian equations (9) we find
ﬁ:/aﬂmﬂammzf @ﬂ@Moﬂﬂwﬂxmﬁ
0 0

:Am(ﬁnaxw_@ﬂw—dﬁﬂﬂn@)m
d

= — /OOO yr (:L'T(t) )\(t)) dt = xZ M0) = xd Vi Vi 0.

5.1 Extension to nonleft-invertible systems

In the case where system ¥ is left-invertible, given an initial state o € R", a solution to
Problem 2.1 exists if and only if z( satisfies (17). In such case, in view of Lemma 5.1 the
feedback solution v = —K z, with K defined in (18), is unique. On the contrary, when 3 is
not left-invertible, it is easy to see that the optimal feedback matrix is not unique. To see this,
recall that if X is not left-invertible, the reachable subspace R, on V5 differs from the origin.
As aforementioned, R3, can be interpreted as the subspace of state trajectories that can be
followed indefinitely while maintaining the output function y at zero. It follows that, if v is

an optimal control for Problem 2.1 and z° is the corresponding state trajectory, then any other



control leading to a state trajectory that differs from z° only by components on R, leads to
the same value of the cost, and is therefore optimal as well. In other words, the set of optimal
controls for Problem 2.1 is parameterized modulo the inputs driving the state of ¥ on R%.
Hence, when ¥ is not left-invertible, the results of Theorems 5.1 and 5.2 do not directly apply.
However, the geometric approach taken here can be easily adapted to handle nonleft-invertible
systems, see also [10]. Consider to this end a nonleft-invertible system ¥, and the auxiliary
system ¥ described by the triple (A4 B F, BQ,C), where

1. Fis such that (A+ B F) V5, C V5., and such that all the eigenvalues of (A + B F') restricted
to Ry = Vs NS (which are freely assignable) are stable;

2. ) is a basis matrix of (B71 V&)t

The system ¥ thus obtained is left-invertible as shown in [12, Theorem 1], since the introduction
of matrix {2 restricts the set of allowable inputs so as to eliminate the functions yielding motions
on R§. Moreover, the invariant zeros of this new system 3 are those of the original system
) plus those assigned through F', which are stable. This transformation on ¥ also maintains
the right-invertibility and relative degree, [12, Proposition 1]. Now, let K be the optimal
state feedback matrix for the auxiliary system. Then K :=Q K — F is one of the solutions

of the original problem, see Figure 2. All the other optimal solutions can be obtained by

Figure 2: Block-diagram of the left-inversion scheme

changing F' within the set of stabilizing friends of V5;. This set is always non-empty when 3 is

nonleft-invertible.

6 Concluding Remarks

A new method for the solution of the cheap linear quadratic optimal control problem has
been presented for continuous time systems. The key idea of this approach is to recast the

cheap LQ regulator as an output nulling problem for the Hamiltonian system. The optimal



control is sought within the class of input functions that can be expressed as a static state
feedback, so as to exclude the possibility of distributions in the optimal control function.
As a consequence, a problem of existence of optimal solutions arises, since for certain initial
conditions a solution of the cheap LQ problem may not exist. As such, a geometric analysis
of independent theoretical interest on the structure and properties of the Hamiltonian system
has been carried out in order to characterize the subspace of admissible initial conditions, and
to determine the corresponding optimal state feedback matrix when an optimal solution does
exist. The procedure herein discussed only involves the basic tools that lie at the heart of
the geometric approach, and has been conveniently exploited to derive a simple and efficient

geometric algorithm.
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