96 research outputs found
Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications
The conceptual design and operational principle of a novel high-efficiency,
fast neutron imaging detector based on THGEM, intended for future fan-beam
transmission tomography applications, is described. We report on a feasibility
study based on theoretical modeling and computer simulations of a possible
detector configuration prototype. In particular we discuss results regarding
the optimization of detector geometry, estimation of its general performance,
and expected imaging quality: it has been estimated that detection efficiency
of around 5-8% can be achieved for 2.5MeV neutrons; spatial resolution is
around one millimeter with no substantial degradation due to scattering
effects. The foreseen applications of the imaging system are neutron tomography
in non-destructive testing for the nuclear energy industry, including
examination of spent nuclear fuel bundles, detection of explosives or drugs, as
well as investigation of thermal hydraulics phenomena (e.g., two-phase flow,
heat transfer, phase change, coolant dynamics, and liquid metal flow).Comment: 11 Pages; 6 Figures; Proceeding of the International Workshop on Fast
Neutron Detectors and Application FNDA2011, Ein Gedi, Israel, November 2011.
Published on the Journal of Instrumentation; 2012 JINST 7 C0205
Pseudonymization risk analysis in distributed systems
In an era of big data, online services are becoming increasingly data-centric; they collect, process, analyze and anonymously disclose growing amounts of personal data in the form of pseudonymized data sets. It is crucial that such systems are engineered to both protect individual user (data subject) privacy and give back control of personal data to the user. In terms of pseudonymized data this means that unwanted individuals should not be able to deduce sensitive information about the user. However, the plethora of pseudonymization algorithms and tuneable parameters that currently exist make it difficult for a non expert developer (data controller) to understand and realise strong privacy guarantees. In this paper we propose a principled Model-Driven Engineering (MDE) framework to model data services in terms of their pseudonymization strategies and identify the risks to breaches of user privacy. A developer can explore alternative pseudonymization strategies to determine the effectiveness of their pseudonymization strategy in terms of quantifiable metrics: i) violations of privacy requirements for every user in the current data set; ii) the trade-off between conforming to these requirements and the usefulness of the data for its intended purposes. We demonstrate through an experimental evaluation that the information provided by the framework is useful, particularly in complex situations where privacy requirements are different for different users, and can inform decisions to optimize a chosen strategy in comparison to applying an off-the-shelf algorithm
Construction and execution of experiments at the multi-purpose thermal hydraulic test facility TOPFLOW for generic investigations of two-phase flows and the development and validation of CFD codes - Final report
The works aimed at the further development and validation of models for CFD codes. For this reason, the new thermal-hydraulic test facility TOPFLOW was erected and equipped with wire-mesh sensors with high spatial and time resolution. Vertical test sections with nominal diameters of DN50 and DN200 operating with air-water as well as steam-water two-phase flows provided results on the evaluation of flow patterns, on the be¬haviour of the interfacial area as well as on interfacial momentum and heat transfer. The validation of the CFD-code for complex geometries was carried out using 3D void fraction and velocity distributions obtained in an experiment with an asymmetric obstacle in the large DN200 test section. With respect to free surface flows, stratified co- and counter-current flows as well as slug flows were studied in two horizontal test channels made from acrylic glass. Post-test calculations of these experiments succeeded in predicting the slug formation process. Corresponding to the main goal of the project, the experimental data was used for the model development. For vertical flows, the emphasis was put on lateral bubble forces (e.g. lift force). Different constitutive laws were tested using a Multi Bubble Size Class Test Solver that has been developed for this purpose. Basing on the results a generalized inhomogeneous Multiple Size Group (MUSIG) Model has been proposed and implemented into the CFD code CFX (ANSYS). Validation calculations with the new code resulted in the conclusion that particularly the models for bubble coalescence and fragmentation need further optimisation. Studies of single effects, like the assessment of turbulent dissipation in a bubbly flow and the analysis of trajectories of single bubbles near the wall, supplied other important results of the project
Experiments performed with bubbly flow in vertical pipes at different flow conditions covering the transition region: Simulation by coupling Eulerian, Lagrangian and 3D random walks models
[EN] Two phase flow experiments with different superficial velocities of gas and water were performed in a vertical upward isothermal cocurrent air-water flow column with conditions ranging from bubbly flow, with very low void fraction, to transition flow with some cap and slug bubbles and void fractions around 25%. The superficial velocities of the liquid and the gas phases were varied from 0.5 to 3 m/s and from 0 to 0.6 m/s, respectively. Also to check the effect of changing the surface tension on the previous experiments small amounts of 1-butanol were added to the water. These amounts range from 9 to 75 ppm and change the surface tension. This study is interesting because in real cases the surface tension of the water diminishes with temperature, and with this kind of experiments we can study indirectly the effect of changing the temperature on the void fraction distribution. The following axial and radial distributions were measured in all these experiments: void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter and turbulence intensity. The range of values of the gas superficial velocities in these experiments covered the range from bubbly flow to the transition to cap/slug flow. Also with transition flow conditions we distinguish two groups of bubbles in the experiments, the small spherical bubbles and the cap/slug bubbles. Special interest was devoted to the transition region from bubbly to cap/slug flow; the goal was to understand the physical phenomena that take place during this transition A set of numerical simulations of some of these experiments for bubbly flow conditions has been performed by coupling a Lagrangian code, that tracks the three dimensional motion of the individual bubbles in cylindrical coordinates inside the field of the carrier liquid, to an Eulerian model that computes the magnitudes of continuous phase and to a 3D random walk model that takes on account the fluctuation in the velocity field of the carrier fluid that are seen by the bubbles due to turbulence fluctuations. Also we have included in the model the deformation that suffers the bubble when it touches the wall and it is compressed by the forces that pushes it toward the wall, provoking that the bubble rebound like a ball.The authors of this paper are indebted to the National Plan of I+D by the support of the coordinated projects REMOD-ERN ENE2010-21368-C02-01/CON and ENE2010-21368-C02-02/CON to perform the experiments.Muñoz-Cobo, JL.; Chiva, S.; Ali Abdelaziz Essa, M.; Mendez, S. (2012). Experiments performed with bubbly flow in vertical pipes at different flow conditions covering the transition region: Simulation by coupling Eulerian, Lagrangian and 3D random walks models. Archives of Thermodynamics. 33(1):3-39. https://doi.org/10.2478/v10173-012-0001-4S33933
Aufbau und Durchführung von Experimenten an der Mehrzweck-Thermohydraulikversuchsanlage TOPFLOW für generische Untersuchungen von Zweiphasenströmungen und die Weiterentwicklung und Validierung von CFD-Codes - Abschlussbericht
Ziel der Arbeiten war die Weiterentwicklung und Validierung von Modellen in CFD-Codes. Hierzu wurde am FZD die thermohydraulische Versuchsanlage TOPFLOW aufgebaut und mit räumlich und zeitlich hochauflösenden Gittersensoren ausgestattet. Vertikale Teststrecken mit Nenndurchmessern von DN50 bzw. DN200 für Luft/Wasser- sowie Dampf/Wasser-Strömungen lieferten Ergebnisse zur Entwicklung von Strömungsformen, zum Verhalten der Zwischenphasengrenzfläche sowie zum Wärme- und Impulsaustausch zwischen den Phasen. Die Validierung des CFD-Codes in komplexen Geometrien erfolgte anhand von 3D Gasgehalts- und Geschwindigkeitsfeldern, die bei Umströmung eines asymmetrischen Hindernisses auftreten, das in der Teststrecke DN200 eingebaut war. Im Hinblick auf Strömungen mit freier Oberfläche untersuchte das FZD in zwei horizontalen Acrylglas-Kanälen geschichtete Zweiphasenströmungen im Gleich- bzw. Gegenstrom sowie Schwallströmungen. Bei den Nachrechnungen dieser Versuche gelang die Simulation der Schwallentstehung. Entsprechend des Projektziels wurden die experimentellen Ergebnisse zur Modellentwicklung genutzt. Bei vertikalen Strömungen stand die Wirkung der lateralen Blasenkräfte (z.B. Liftkraft) im Vordergrund. Zum Test unterschiedlicher Modellansätze wurde hierzu ein Mehrblasenklassen-Testsolver entwickelt und genutzt. Darauf aufbauend wurde ein neues Konzept für ein Mehrblasenklassenmodell, das Inhomogene MUSIG Modell erarbeitet und in den kommerziellen CFD Code CFX (ANSYS) implementiert. Bei Validierungsrechnungen zeigte sich, dass vor allem die Blasenkoaleszenz- und -zerfallsmodelle weiter optimiert werden müssen. Untersuchungen zu Einzeleffekten, wie z.B. die Abschätzung von Turbulenzkoeffizienten und die Analyse der Trajektoren von Einzelblasen in unmittelbarer Wandnähe, lieferten weitere wichtige Ergebnisse des Projekts
QoS Challenges in Wireless Sensor Networked Robotics
Wireless sensor networks and mobile robotics are two hot research topics. Integrating them leads to a wide range of new applications in many different environments such as terrestrial, underwater, underground and aerial. Where sensor networks are mainly used for large-scale monitoring and control, mobile robotics are used for performing fine-scale actions and automation. Network heterogeneity together with stringent Quality of Service (QoS) demands from applications such as voice and video make QoS support very challenging. Therefore, this paper investigates the QoS challenges in wireless sensor networked robotics and presents a novel QoS framework as solution to cope with these challenges
Statistical biases due to anonymization evaluated in an open clinical dataset from COVID-19 patients
Direct improvement of quality of life using a tailored quality of life diagnosis and therapy pathway: randomised trial in 200 women with breast cancer
Background: Despite thousands of papers, the value of quality of life (QoL) in curing disease remains uncertain. Until now, we lacked tools for the diagnosis and specific treatment of diseased QoL. We approached this problem stepwise by theory building, modelling, an exploratory trial and now a definitive randomised controlled trial (RCT) in breast cancer, whose results we report here.
Methods: In all, 200 representative Bavarian primary breast cancer patients were recruited by five hospitals and treated by 146 care professionals. Patients were randomised to either (1) a novel care pathway including diagnosis of ‘diseased’ QoL (any QoL measure below 50 points) using a QoL profile and expert report sent to the patient's coordinating practitioner, who arranged QoL therapy consisting of up to five standardised treatments for specific QoL defects or (2) standard postoperative care adhering to the German national guideline for breast cancer. The primary end point was the proportion of patients in each group with diseased QoL 6 months after surgery. Patients were blinded to their allocated group.
Results: At 0 and 3 months after surgery, diseased QoL was diagnosed in 70% of patients. The QoL pathway reduced rates of diseased QoL to 56% at 6 months, especially in emotion and coping, compared with 71% in controls (P=0.048). Relative risk reduction was 21% (95% confidence interval (CI): 0–37), absolute risk reduction 15% (95% CI: 0.3–29), number needed to treat (NNT)=7 (95% CI: 3–37). When QoL therapy finished after successful treatment, diseased QoL often returned again, indicating good responsiveness of the QoL pathway.
Conclusion: A three-component outcome system including clinician-derived objective, patient-reported subjective end points and qualitative analysis of clinical relevance was developed in the last 10 years for cancer as a complex intervention. A separate QoL pathway was implemented for the diagnosis and treatment of diseased QoL and its effectiveness tested in a community-based, pragmatic, definitive RCT. While the pathway was active, it was effective with an NNT of 7
Probabilistic visual recognition of artificial landmarks for simultaneous localization and mapping
- …
