24 research outputs found

    A comparative study of two formal semantics of the SIGNAL language

    Get PDF
    International audienceSIGNAL is a part of the synchronous languages family, which are broadly used in the design of safety-critical real-time systems such as avionics, space systems, and nuclear power plants. There exist several semantics for SIGNAL, such as denotational semantics based on traces (called trace semantics), denotational semantics based on tags (called tagged model semantics), operational semantics presented by structural style through an inductive definition of the set of possible transitions, operational semantics defined by synchronous transition systems (STS), etc. However, there is little research about the equivalence between these semantics.In this work, we would like to prove the equivalence between the trace semantics and the tagged model semantics, to get a determined and precise semantics of the SIGNAL language. These two semantics have several different definitions respectively, we select appropriate ones and mechanize them in the Coq platform, the Coq expressions of the abstract syntax of SIGNAL and the two semantics domains, i.e., the trace model and the tagged model, are also given. The distance between these two semantics discourages a direct proof of equivalence. Instead, we transformthem to an intermediate model, which mixes the features of both the trace semantics and the tagged model semantics. Finally, we get a determined and precise semantics of SIGNAL

    SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications

    Get PDF
    We present a new visual language, SCCharts, designed for specifying safety-critical reactive systems. SCCharts uses a new statechart notation and provides deterministic concurrency based on a synchronous model of computation (MoC), without restrictions common to previous synchronous MoCs. Specifically, we lift earlier limitations on sequential accesses to shared variables, by leveraging the sequentially constructive MoC. The key features of SCCharts are defined by a very small set of elements, the Core SCCharts, consisting of state machines plus fork/join concurrency. Conversely, Extended SCCharts contain a rich set of advanced features, such as different abort types, signals, history transitions, etc., all of which can be reduced via model-to-model transformations into Core SCCharts. This approach enables a simple yet efficient compilation strategy and aids verification and certification

    Towards a verified compiler prototype for the synchronous language SIGNAL

    Get PDF
    International audienceSIGNAL belongs to the synchronous languages family which are widely used in the design of safety-critical real-time systems such as avionics, space systems, and nuclear power plants. This paper reports a compiler prototype for SIGNAL. Compared with the existing SIGNAL compiler, we propose a new intermediate representation (named S-CGA, a variant of clocked guarded actions), to integrate more synchronous programs into our compiler prototype in the future. The front-end of the compiler, i.e., the translation from SIGNAL to S-CGA, is presented. As well, the proof of semantics preservation is mechanized in the theorem prover Coq. Moreover, we present the back-end of the compiler, including sequential code generation and multithreaded code generation with time-predictable properties. With the rising importance of multi-core processors in safety-critical embedded systems or cyber-physical systems (CPS), there is a growing need for model-driven generation of multithreaded code and thus mapping on multi-core. We propose a time-predictable multi-core architecture model in architecture analysis and design language (AADL), and map the multi-threaded code to this model

    Grounding Synchronous Deterministic Concurrency in Sequential Programming

    Get PDF
    In this report, we introduce an abstract interval domain I(D; P) and associated fixed point semantics for reasoning about concurrent and sequential variable accesses within a synchronous cycle-based model of computation. The interval domain captures must (lower bound) and cannot (upper bound) information to approximate the synchronisation status of variables consisting of a value status D and an init status P. We use this domain for a new behavioural definition of Berry’s causality analysis for Esterel. This gives a compact and uniform understanding of Esterel-style constructiveness for shared-memory multi-threaded programs. Using this new domain-theoretic characterisation we show that Berry’s constructive semantics is a conservative approximation of the recently proposed sequentially constructive (SC) model of computation. We prove that every Berry-constructive program is sequentially constructive, i.e., deterministic and deadlock-free under sequentially admissible scheduling. This gives, for the first time, a natural interpretation of Berry-constructiveness for main-stream imperative programming in terms of scheduling, where previous results were cast in terms of synchronous circuits. It also opens the door to a direct mapping of Esterel’s signal mechanism into boolean variables that can be set and reset arbitrarily within a tick. We illustrate the practical usefulness of this mapping by discussing how signal reincarnation is handled efficiently by this transformation, which is of complexity that is linear in progra

    Clock-driven distributed real-time implementation of endochronous synchronous programs

    No full text
    International audienceAn important step in model-based embedded system design consists in mapping functional specifications and their tasks/operations onto execution architectures and their resources. This mapping comprises both temporal scheduling and spatial allocation aspects. Therefore, we promote an approach which starts from loosely-timed/asynchronous models and proceeds by refining them to fully synchronized ones, using so-called clock calculus techniques under the architecture constraints. In this paper we provide a modeling framework based on an intermediate representation format, called clocked graphs, for polychronous endochronous specifications, which are the ones that can be safely considered for deterministic distributed real-time implementation using static scheduling techniques. Our formalism allows the specification of both “intrinsic” correctness properties of the specification, such as causality and clock consistency, and “external” correctness properties, such as endochrony, which ensure compatibility with the desired implementation architecture, including both hardware and software aspects. Using this formalism, we define a new method for distributed real-time implementation of synchronous specification. The move from (endochronous) synchronous specification to realtime scheduled implementation is a seamless sequence of model decorations

    Multi-threaded code generation from Signal program to OpenMP

    Get PDF
    International audienceThe use of multi-core processors will become a trend in safety critical systems. For safe execution of multithreaded code, automatic code generation from formal specification is a desirable method. Signal, a synchronous language dedicated for the functional description of safety critical systems, provides soundness semantics for deterministic concurrency. Although sequential code generation of Signal has been implemented in Polychrony compiler, deterministic multi-threaded code generation strategy is still far from mature. Moreover, existing code generation methods use certain multi-thread library, which limits the cross platform executions. OpenMP is an application program interface (API) standard for parallel programming, supported by several mainstream compilers from different platforms. This paper presents a methodology translating Signal program to OpenMP-based multi-threaded C code. First, the intermediate representation of the core syntax of Signal using synchronous guarded actions is defined. Then, according to the compositional semantics of Signal equations, the Signal program is synthesized to dependency graph (DG). After parallel tasks are extracted from dependency graph, the Signal program can be finally translated into OpenMP-based C code which can be executed on multiple platforms
    corecore