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1 Introduction 
Abstract The use of multi-core processors will become a 

trend in safety c1itical systems. For safe execution of multi-

threaded code, automatic code generation from formal spec- 

ification is a desirable method. Signal, a synchronous lan

guage dedicated for the functional description of safety crit

ical systems, provides soundness semantics for determinis

tic concurrency. Although sequential code generation of Sig

nal has been implemented in Polychrony compiler, deter

ministic multi-threaded code generation strategy is still far 

from mature. Moreover, existing code generation methods 

use certain multi-thread library, which limits the cross plat

form executions. OpenMP is an application program inter

face (API) standard for parallel programming, supported by 

several mainstream compilers from different platforms. This 

paper presents a methodology translating Signal program to 

OpenMP-based multi-threaded C code. First, the intermedi

ate representation of the core syntax of Signal using syn

chronous guarded actions is defined. Then, according to the 

compositional semantics of Signal equations, the Signal pro

gram is synthesized to dependency graph (DG). After par

allel tasks are extracted from dependency graph, the Signal 

pro gram can be finally translated into OpenMP-based C code 

which can be executed on multiple platforms. 

Keywords multi-thread, synchronous language, Signal, 

code generation, OpenMP 

E-mail: hukai@buaa.edu.cn 

Multi-core processors have been widely used in high

performance computing and universal computing. With the 

increase of functional and non-functional demands, multi

core architecture will become indispensable in safety critical 

systems such as avionics, aerospace and automobile control. 

Multi-threaded software is necessary to make full use of 

computing resources of multi-core processors. At present, 

two types of strategies have been developed to aid program

ming multi-threaded software. One is application pro gram in

terfaces (APls) and libra1ies provided by Unix-like OS [l] 

and Windows [2]; the other includes several parallel program

ming technologies such as MPI [3] for the multi-processor 

distributed system, and OpenMP [4] and Intel TBB [5] for 

the shared memory architecture which provides mechanism 

to describe high level parallel algorithm. 

However, these two strategies fail to satisfy the strict quan

titative indicators of functional and non-functional properties 

demanded in safety critical systems. If the executions of the 

embedded software are non-deterministic, they may cause 

undesirable consequences such as delay of reactions and race 

conditions. ln addition, parallel programming is error-prone 

because programmers have to specify the synchronization 

and resources sharing among threads. This will bring the 

multi-threaded coding for safety-critical applications a high

risk programming activity [6]. 

To solve this problem, using model-based development 



and automatic code generation technology based on formal 

methods has become a trend in academics and industries. 

One of the available formal methods used in safety critical 

systems is the synchronous language (7, 8], built on a math

ematical model combining synchronous hypothesis and de

terministic concurrency. In synchronous hypothesis, time is 

abstracted as partial discrete logical time series and actions 

executed by the system are abstracted as discrete steps of 

computing. The input, computation and the output take no 

time at each instant (the unit of discrete logical time). Due 

to the abstract time model, the inherent functional proper

ties are preserved, which makes synchronous languages suit

able for the functional design of systems. The mainstream 

synchronous languages include Esterel [9], Lustre [10], and 

Signal [11] among which Signal is a multi-clocked language 

that no global clock is pre-defined and every signal has its 

own clock. Compared to the mono-clocked synchronous lan

guages, multi-clocked model is more sui table for the descrip

tion of distributed systems and multi-core systems. 

Endochrony [12] and weak endochrony [13] properties 

have been proposed to generate deterministic code from Sig

nal. In the endochronous Signal program, the clock of each 

signal can be computed from a "root clock". The Polychrony 

compiler [14, 15] not only supports the sequential code gen

eration, but also provides the fonction of multi-threaded code 

generation from the endochronous program, based on the 

clustering method. According to the data dependency rela

tions, the Signal program is divided into tasks which will be 

"forked" as threads at the runtime. These threads will com

municate with each other by the "wait-notify" system call 

while in each thread the sequential code will be executed. 

However, there are still some implicit concurrencies in the 

program which may not be discovered and the use of "wait

notify" takes time in the synchronization among threads. 

Weak endochrony property, as its name implies, is less 

strict than endochrony. If the relation among signais meets 

the full-diamond condition (13], it is possible to generate de

terministic multi-threaded code. [16] proposes a methodol

ogy checking weak endochrony property based on bounded 

model-checking. Since the model-checking method is ex

pensive for the code generation, the paper proposes another 

method based on the isochrony [17] property which is suit

able for the compositional design. This method, however, 

cannot fully caver all the weakly endochronous programs. 

(18] proposes a methodology generating deterministic multi

threaded code from weakly endochronous program based on 

synchronous flow dependence graphs [ 19]. Every statement 

in the program corresponds to a thread and the threads syn-

chronize with each other based on "wait-notify" system call. 

On the basis of the atom theory proposed in [13,20] presents a 

general method to check weak endochrony on multi-clocked 

synchronous programs. The corresponding strategy of multi

threaded code generation is given in [21]. However, some re

strictions must be met. For instance, data types of the pro

gram interface should be finite and delay equations should 

be replaced by the clock relation equations. Therefore, some 

weakly endochronous programs may be rejected. 

Another strain of methodology is proposed in [22]. It 

translates synchronous guarded actions, an intermediate rep

resentation for mono-clocked synchronous languages, into 

OpenMP-based multi-threaded program. The synchronous 

guarded actions are first translated into dependency graph 

(DG) and then, from the DG, tasks are divided for the parallel 

execution. Finally, OpenMP-based C code can be generated 

according to the task partition. Since OpenMP has been im

plemented by several compilers from different OS, the gener

ated code can be executed on multiple platforms. 

As an API standard for parallel programming, OpenMP 

provides abundant mechanism for the description of high 

level parallel algorithms. The newest version of OpenMP 

supports fine-grained scheduling and task balancing which 

can increase the performance of the program. However, few 

studies of multi-threaded code generation for Signal have 

chosen OpenMP as the target language. Drawing on the idea 

presented in [22], this paper introduces a methodology dis

covering the implicit parallelism from the Signal program and 

translating the endochronous Signal program to OpenMP

based C code. However, some vital changes are made to fit 

the characteristics of Signal. Firstly, while [22] directly trans

lates the program written by synchronous guarded actions, 

p1imitive constructs in Signal are needed to be first translated 

into representation of synchronous guarded actions. With re

gard to this, some new f eatures are added to synchronous 

guarded actions. For instance, in order to represent implicit 

clock relations defined in each primitive construct, Boolean 

variables representing the clocks are introduced. Moreover, 

in [22], action dependency grpah (ADG) is a bipartite graph 

in which variables and guarded actions are vertices. This pa

per proposes a DAG (directed acyclic graph)-like form of DG 

in which nodes are guarded actions and edges represent the 

dependency relations between nodes. 

The paper is structured as follows. An informa! introduc

tion to the Signal is provided in Section 2. In Section 3, 

the paper proposes an intermediate representation of the core 

syntax of Signal using synchronous guarded actions. Based 

on the compositional semantics and data dependency rela-



tions, the formal definition of DG is given. In Section 4, 

methods of finding the implicit parallelism of the Signal pro

gram and the task partition from DG are proposed. Finally, in 

Section 5, the translation from partitioned tasks to OpenMP

based C code is defined and an example is analyzed to vali

date the methodology proposed in this paper. 

2 Introduction to Signal 

2.1 Syntax and conesponding semantics 

Apart from primitive constructs listed in Table 1, Signal 

also provides other extended constructs such as the dock 

operator "/\" and memory operator "cell". Moreover, nested 

process, module and other mechanisms are defined in Signal 

to specify the large system with components at various rates. 

The details of the syntax can be refened in [23]. 

Relations among signals and their docks are defined as 

equations in Signal. The basic unit of a Signal program, 

called process, consists of a set of equations. Two basic oper

ators, respectively called synchronous composition and local 

de.finition, are applied to the process. The syntax and cone-

As mentioned in Section 1, time is abstracted and the behav- sponding semantics are shown in Table 2. 

iors of the system are divided into a discrete series of instants. Table 2 Piimitive operations on the process 

At each instant, the input, computing and output are executed 

instantaneously and simultaneously. The unbounded series of 

typed values are called signais. Signals in the program can be 

present or absent at each instant and the dock of a signal is 

defined as the series of subscripts at which instant the signal 

is present. 

In Signal, primitive constructs (core syntax) are provided 

to express the relations between signals, defined in Table 1. 

Note that the dock of signal sis denoted as '"'s". 

Operators in Signal not only depict the data dependency 

relations but also imply dock relations among signais. Ac

cording to the dock relations, operators can be divided into 

two types, mono-docked operators and multi-docked opera

tors. In equations of mono-docked operators, induding Re

lation and Delay, operand signals are synchronous, that is, at 

any instant, all signais will be present or absent at the same 

time. In contrast, operand signals of multi-clocked operators, 

such as Sampling and Merge, may have different docks. For 

instance, in the Sampling equation, shown in Table 1, the left

hand side value O will be present only when the right-hand 

side value sl and s2 are present and s2 evaluates to true. 

Table 1 P1imitive constrncts of Signal 

Name Syntax Informa! semantics 

Relation O := /(sl, s2, When sl, s2, ... , sn are present, 0 is 

... , sn) present and the value is /(sl, s2, ... , sn); 

otherwise signal Ois absent 

Delay O := sl $ init r. The docks of O and sl are equal; when sl 

is present, the value of O is the previous 

present value of sl; the initial value of 0 

is C 

Sampling O := sl when s2 0 will be present and evaluated to sl only 

when s l and s2 are present and s2 evaluates 

to true 

Merge O := sl default When sl is present, 0 is present and evalu-

s2 ated to sl; other\vise when s2 is present, 0 

is present and evaluated to s2; if neither sl 

nor s2 is present, signal O is absent 

Name Syntax 

Synchronous Pl Q 

composition 

Local defini- P where t_l sl 

tion ... t_n sn; end 

lnfo1mal semantics 

P and Q are processes. The behavior of 

PIQ is the conjunction of the mutual be

haviors of P and Q [24] 

Pis a process and sl ... sn are signais. 

The scope of s 1, ... , sn is restricted to P 

which means they are not visible outside 

P[24] 

From the introduction given above, we can give the ab

stract syntax process, shown as below: 

P, Q ::= x := yfzlPIQIP/x 

The process (P and Q) consists of the synchronous compo

sition (PIQ) of dataflow equations. P/x is the local definition 

of signals. Dataflow equation "x := yfz" represents that the 

value of xis decided by the input signal y, z and the operation 

f on them. 

To simplify the translation, this paper sets a few restric

tions on the source Signal program: all equations are w1it

ten in primitive constructs; every signal can only be defined 

once in the program [24]; all equations are in the same pro

cess, which means that there is no subprocess in the Signal 

program. Moreover, in Signal, a program is a process and 

shares the same syntax [24]. In the remainder of the paper, 

the source program is a flattened process written in primitive 

constructs. 

Two IDEs, RT-builder [25] and Polychrony [26] are based 

on Signal. The former one is commercial version and Poly

chrony is open source for academic use. The code generated 

by Polychrony compiler takes the form of the infinite loop of 

elementary iterations. In each iteration, the program will read 

from the input, compute and write to the output. More details 

of this code generation principle can be found in [14]. In this 

paper, we will use the iteration as the execution model of the 

generated code. 



2.2 An example of Signal 

3 Intermediate representation for primitive 
A Signal program presented in [24] called ABRO is used to constructs and the program synthesis method 
illustrate the code generation in the paper. Figure 1 is a finite 

state machine specification of the ABRO process. Due to the declarative feature of Signal, one of the indispens-

Fig. 1 A finite state machine specification of the ABRO process 

ABRO emits signal O when input signals A and B have 

been received. When input signal Ris received, ABRO cornes 

back to the initial state and begins to wait the inputs. Once 0 

has been emitted, it will not be emitted again until R has ar

rived to reset the state. The original version of the Signal pro

gram of ABRO can be found in [24]. Here we give a modified 

version, shown in Fig. 2. 

1 : process ABRO= 
2: ( ? boolean A, B, R; ! event O ; ) 
3: ( 1A _received "= B _received "=after _fi_ until_ 0 
4: A received "= A "= B "=R 
5: RT := not R when R 
6: A received :=RTdefaultAR 
7: AT:=A whenA 
8: AR :=ATdefault Adelay 
9: Adelay: = A_received $ init false 
10: IBT:= BwhenB 
11: 1 B _received := RT default BR 
12: I BR := BT default Bdelay 
13: 1 Bdelay := B _received $ init false 
14: from R before O := not O default RR 
15: RR :,;-Re defauît after R until 0 
16: Re := Rwhen R 

- - -

17: after R until O := from R before O $ init true 
18: 0 :=true when ABR 

- - -

19: ABR :=A received whenArr 
20: Arr:= B _received when after_R_until_OI) 
21: where 
22: boolean A received, B received, from R before 0 
23: ,Adelay, Bdelay, AR, BR, RR, ABR, Arr, after_R_until_O 
24: ,AT, BT, RT, Re; end; 

Fig. 2 Signal program of ABRO process 

In the process ABRO, A, B, Rare Boolean typed input sig

nals and O is event typed output signal, as shown in Line 2. 

Line 3 to Line 20 are dataflow equations specifying the dock 

and value relations among signals. Lines 3 and 4 synchro

nize the input signals A, B, R with the intermediate signals 

A_received, B_received and after_R_until_O. By analyzing 

the dock relations among signals, it can be deduced that the 

dock of input signals is the only root dock of this program, 

so the pro gram is endochronous. 

able steps when generating imperative code is to translate the 

source program into an intermediate form with the informa

tion of clock hierarchy and data dependency relations. Sec

tion 3.1 presents a method translating primitive constructs of 

Signal into the code block of synchronous guarded actions 

which is used to represent the clock and data dependencies 

among the operands of equations. To represent the data de

pendency relations for the whole program, another interme

diate form called DG is defined in Section 3.2. Implicit con

currency of the program can be then detected by analyzing the 

DG, which will be proposed in Section 4. Note that the source 

program to be translated should be endochronous. Based on 

the definition given in [18], the informal description of en

dochrony is: a Signal program is endochronous if and only 

if the clock of all signals can be computed according to the 

intemal clock relations and no extemal environment runtime 

information is needed, which equivalently means that there 

will be a root dock in the program. 

3.1 Synchronous guarded actions for primitive constructs 

Based on the semantics of core syntax given in Section 2, the 

synchronous guarded actions is defined as below, which is 

different from [22]: 

A synchronous guarded action is a four-tuple (R, L, B, 0). 

Ris the set of signals which represent the right-hand side val

ues of the primitive constructs. L is the set of the left-hand 

side values. B is the code block defined as (G, A), taking the 

form "if G thenA". G is a Boolean expression and Ais the set 

of actions to be executed when G holds. 0 is the output set 

of the signals which can be used in other blocks' right-hand 

side values. 

There are three kinds of signals: input, output and intenne

diate signals. Although input signals cannot be the left-hand 

side value of the equation, the dock relations can be specified 

to decide at which instants the value can be read. Intermediate 

signals and output signals can be the left-hand and right-hand 

side value of the equation. 

The synchronous guarded actions representations of the 

core syntax are defined below. We use syntax of C as the 

style of pseudo code in the block and the dock of signal "s" 

is denoted as "C_s". Note that before constructing blocks for 

each equation in the program, dock analysis needs to be com

pleted to divide all signals into dock equivalence classes so 



that synchronous signais will have the same clock represen

tation in each block. 

a) 0 := f(sl, s2, ... , sn)

Right-hand side signais: sl, s2, ... , sn, Co 

Left-hand side signal: 0 

if(Co==true) 

0 = j(sl, s2, ... , sn); 

Output of the block: 0 

In the block above, "f" is an n-ary instant operator. The 

right-hand side operands of the block are the operands of op

erator "f" and the left-hand side operand of the block is O.

The implicit clock relation is '"'O = A s1 = · · · = A sn" while 

C_O is defined as the common dock of these signals. Signals 

on the right-hand side are needed to compute the value of O. 

The Boolean expression in the block, "C_O= =true", means 

that the O can be computed only when O is present at this in

stant. The Output of the block depicts that after the execution 

of the code block, 0 can be used as a right-hand side value 

and if Ois an output signal, the write action can be executed. 

b) 0 := s1 default s2

Right-hand side signais: C_sl, sl 

Left-hand side signais: 0, C_0 

if(C_sl==true){ 

0 = s1; 

Co=tme; 

Output of the block: C_0, 0 

Right-hand side signais: C_sl, C_s2, s2 

Left-hand side signais: 0, C_0 

if(C_sl==false && C_s2==tme){ 

0= s2; 

C_O=true; 

Output of the block: C_0, 0 

From the semantics of operator Merge, two corresponding 

code blocks are constructed. Signal s1 is prior to s2. If s1 is 

present, 0 is assigned to the value of sl. If sl is absent and 

s2 is present, 0 is assigned to the value of s2. Note that apart 

from the assignment to 0, the dock of 0, denoted by C_O 

should be assigned to trne if s1 or s2 is present. 

c) 0 := s1 when s2

Right-hand side signais: s2, C_s1, C_s2 

Left-hand side signais: 0, C_0 

if(C_sl==true && C_s2==true && s2==true){ 

0 = si; C_O=tme; 

Output of the block: C_0, 0 

From the block shown above, we can see that if sl and s2 

are present and s2 evaluates to true (which means type of s2 

should be Boolean or event), 0 is present and evaluates to the 

value of sl . 

d) 0 := s1 $ init c

Right-hand side signais: C _O 

Left-hand side signais: Null 

if(G_O==true){ 

} 

Output of the block: Null 

For operator Delay, since Delay is a mono-docked opera

tor, s1 and 0 have the same dock, which means that when 

sl is present at the instant, 0 is also present and can be used 

as right-hand side value. The dock of 0 and s1, denoted as 

C_O, is the single right-hand side signal. However, the corre

sponding code block has no action since no data dependency 

is defined in the equation. How to assign value to the memory 

signal will be introduced in Section 3.2. 

As for the input signals in the root dock set, at the begin

ning of each iteration, read actions should be executed. The 

corresponding dock should also be set to true. 

Right-hand side signais: Null 

Left-hand side signais: i 

{ read(i); C _i=true;} 

Output of the block: i, C_i 

For the input signal not belonging to the root dock set, the 

dock can be extracted from the dock calculation, denoted as 

C_s. If C_s evaluates to true, the read actions can be executed 

so that the read will be nested in the same block assigning 

C_s to true. 

Left-hand side signais: i, other signais 

if( ... ){ 

other assignments 

C_s=tme; 

read(i); 

Output of the block: i, other signais 

Two other primitive constructs indude the local definition 

(P/x) and synchronous composition (PIQ). They have no cor

responding code blocks of synchronous guarded actions. The 

local definition operator enables one to restrict the scope of 

a signal to a process [24]. Intermediate signais are defined in 

this part and they are invisible from the outside of the process. 

Synchronous composition is the union of equations defined 

in the program. Equations communicate with each other by 

common signal variables. The behavior of the program can 

be seen as the conjunction of mutual behaviors of all equa

tions [24]. Based on the semantics of synchronous composi-



tion, code blocks of synchronous guarded actions generated for Delay equation has no left-hand side value. In this case, 

from the program will be composed into the DG according tests on whether docks of memory signais evaluate to true are 

to the data dependencies among code blocks of synchronous included in the guard condition of b 1 and no precedence re

guarded actions, used to describe the behavior of the whole lation needs to be specified between nodes respectively con-

program and explore the implicit concurrencies. taining b 1 and b2. 

3.2 Synthesis method based on DG 

After generating the code block of synchronous guarded ac

tions for each equation in the program, DG can be con

structed. All signals belonging to the same class are syn

chronous. The definition of DG is given below: DG is defined 

as (NS, � ). NS is the set of nodes which represents the code 

block of synchronous guarded actions. � is the precedence 

relation between nodes defined over NS as follow: s 1  � s2 

if and only if some signais exist both in right-hand side of 

s2 and left-hand side of sl, which indicates that to execute 

the code in s2, we first need to get the execution result of 

sl. Note that two code blocks for the operator Merge defined 

in Section 3.1 will be treated as one node in DG. A DG is 

correct if every cycle "sO � · · · � sn � sO" is a pseudo cy

cle: the conjunction of all guard expression of synchronous 

guarded action sO, ... , sn involved in the cycle is false. From 

this, it is also easy to know that DG is not strictly a DAG 

because there may be pseudo cycle in the graph. Note that if 

dependencies from docks to their corresponding signais (in

put signais) are added, dock constraints are set. In this case, 

values read from the environment must meet the constraints 

to guarantee the correct execution. 

To generate a complete DG, some situations need to be 

considered. Sorne blocks are for the read of input signal with 

no right-hand side signal. These nodes will be composed into 

a single node called the initial node. Since there is no prece

dence among these nodes, they can be arranged at any order 

when getting composed. Furthermore, the dock of the root 

clock class, denoted as C_l, has to be set to true in the front 

of the initial node. At the end of iteration, a terminal node 

is also needed in which every signal on the left-hand side of 

the Delay equation(denoted as memory signais) will be set to 

new value under the condition that it has been present at the 

last iteration. These blocks are then synthesized into the ter

minal node in which all the docks of the clock equivalence 

classes are also needed to be set to false. Note that the initial 

assignments to memory signais needs to be executed before 

the iteration begins. Furthermore, according to the definition 

given in Section 3. 1, some blocks (denoted as bl) may have 

the right-hand side signals which are memory signals but the 

code block of synchronous guarded actions (denoted as b2) 

Redundancies in the generated DG can be found as fol-

lows: 

1) The Boolean sub expressions may be duplicated in the

condition expression of the code blocks. For instance, ac

cording to the algorithm given in Section 3.1, the corre

sponding condition of the equation "c := b when not b" is 

"C_b==true&& C_b==true &&b==false". 

2) If there are blocks with signais in the same clock equiva

lence class as the left-hand side value, there will be duplicated 

assignments to the dock. 

To eliminate these redundancies, the duplicated Boolean 

expressions are to be deleted first. Then traverse from the ini

tial node, if there is a clock assignment in a node, the same 

assignment in its subsequent nodes will be deleted. 

4 Task partition strategy 

As defined in Section 3, DG is a kind of DAG on which prece

dence relation is defined among nodes. Informally, the prece

dence relation indicates the dependency between nodes. If no 

precedence relation exists between two nodes, they can run in 

parallel. In this section, we partition a set of nodes of DG into 

tasks. The precedence relation on tasks is compatible with the 

precedence relation on nodes. 

Task is defined as a set of nodes belonging to NS of DG. 

TS is a two-tuple (T, �),in which T is a  partition of NS and 

� is the precedence relation among tasks on T. A task t of 

T is an anti-chain in the reflexive transitive closure -v0 of � 

(i.e., nodes in a task cannot be compared: (Vt E T)(Vnl E 

t)(Vn2 E NS)(nl � n2) ⇒ ((nl = n2) V (n2 (J. t)). Among 

tasks belonging to T, tl � t2 if and only if there exists at 

least one node in t2 which is preceded by nodes in tl. Note 

that although cycle checking has been done after the con

struction of DG, there may be pseudo cycles of tasks since 

pseudo cycles are allowed in DG. To deal with this problem, 

the guard of a task t is defined as the disjunction of the guards 

of nodes belonging to t. If the conjunction of ail these guards 

of tasks involved in the cycle is false, the cycle is a pseudo 

cycle. Because of pseudo cycles, the result of some nodes in 

t2 may be required by some nodes in t1 (when some condi

tion C is true) and conversely (when the condition C is false). 

In this paper we only consider DAG of nodes: the processing 



of programs with cycles and pseudo cycles is not described 
here. One can then use a topological sorting to partition nodes 
into tasks so that the result of the partition is a total order of 
tasks: for all tasks t1, t2, ... , tn belonging to T, a series of 
them, t 1 -» · · · -» tm

n
-i -» lm11 exists. As a result, no task pair 

will be allowed to execute in parallel. Here we illustrate the 
task partition with the example in Section 2. 

Part of the code is shown in Fig. 3. Lines 3 and 4 show 
the root clock of the program is the clock of input signals A,

B and R. Synchronized with these signals, intermediate sig
nal A_received, B_received and after_R_until_O also belong 
to the root class. The initial node, as a result, contains the 
read of the input signals and the assignment to the root clock 
C _l. Tuen for each equation in the program, corresponding 
code block of synchronous guarded actions are generated. Fi
nally, these nodes are composed into the DG shown in Fig. 4. 
Arrows in the figure represent the precedence relation "--+". 
Note that since Adelay and Bdelay are memory signals and 
the guard expression "C_l==true" implies that Adelay and 
Bdelay are present (Adelay and Bdelay are in the root clock 

3: (1 A_received "= B_received "= after_R_until_O
4: 1 A_received "= A "= B "= R

5: 1 RT := not R when R

6: 1 A _received := RT default AR 

7: 1 AT := A when A 

8: 1 AR := AT default Adelay 
9: 1 Adelay := A_received $ init false 
l 0: 1 ET := B when B

11: 1 B _received := RT default BR

12: I BR := ET default Bdelay 
13: 1 Bdelay := B _received $ init fa!se

Fig. 3 Fragment of ABRO process 

H{C 3=Jitlse & 
C J�true H 
JfR=Adclay; 

6: 
rnc 1°:o::::-true)I 
A receîvc<lzRT: 

l. -

7: 

.,: 

ure 1 .... �truc && 
B·--··'fruc) { 

BT=B; 
c_4.,.,.frue: 

HlC 4=fülsc && 
C · l ;;"'·truc) { 
IJR=Bdelay� 

If( C 2,·t····trne)' 
lJ fcccivcd=RT: 

l -

Fig. 4 DG con-esponding to Signal program in Fig. 3 

class), corresponding nodes for two Delay equations are 
omitted and there is no arrow explicitly illustrating the prece
dence relation between Adelay and AR nor between Bdelay 
and BR.

The result of the task partition is shown in Fig. 5. Nodes of 
DG are divided into four tasks. Arrows in the figure illustrate 
the total order among four tasks: taskl will be executed first 
and task4 will be the last one to be executed. Nodes in the 
same task can be executed in parallel. For instance, in task2 
there are three nodes preceded by the node in taskl. How
ever, there is no precedence relations among these nodes so 
that they can be executed in parallel. 

After the task partition, the generated tasks will be used 
for the OpenMP code generation which will be presented in 
Section 5. 

5 OpenMP based C code generation and case 

study 

OpenMP, an API for shared-memory parallel programming in 
C/C++ and FORTRAN, provides users with several mecha
nisms such as compiler directive, programming interface and 
environment variables for the high level description of paral
lel algorithms. This section will introduce the method map
ping tasks partitioned in Section 4 to the OpenMP-based C 
code. 

The basic syntax of directives in OpenMP is shown in 
Fig. 6. There are several directives in OpenMP. For instance, 
directive "parallel for" is used for the parallelization of "for" 
loop; directive "parallel sections" is used to specify the code 
blocks which can be executed in parallel. ln OpenMP 3.0, 
directive "task" is added to support the parallelization of ir
regular data, iteration and recursive call. Since actions of 
code blocks are simple computations, we choose the directive 
"parallel sections" for the parallelization, shown in Fig. 7. 
The code blocks executed in parallel are encircled in direc
tive "#pragma omp section" respectively. 

Moreover, race condition will occur when multiple threads 
can access shared variables at the same time, which will make 
the result of the execution non-deterministic. Clauses, such 
as p1ivate, shared and reduction, are provided to specify the 
variable scope and sharing property to handle this problem. 
Clause private (list) is used to declare that each thread has its 
own duplicate of the variables in the list. Clause shared (list) 
declares the list of shared variables among threads. Clause re
duction (operator:list) specifies an operation on one or a list 
of variables. Each thread has duplicates of variables in the list 



Task2 

If( C _ 1 ==true && A==true) { 
RT=notR; 

If( C _ 1 =truc && B==true) { 
BT=B; 

If( C _3==true){ 
AR=AT; 

} 

If( C _ 3==false && 
C_l=true)} 
AR=Adelay; 

6: 
If( C _ 2==true) { 

C_2=true; 

} 

A _received=RT; 

} 

If(C_2==false && 
C_l=true)} 
A received=AR 

Task3 

Task4 

C_4=true; 

} 

5: 
If(C_ 4=true){ 
BR=BT; 

If( C _ 4=false && 
C_l=true)} 
BR=Bdelay; 

} 

7: 
If( C _ 2==true) { 
B _received=RT; 

} 

lf(C_2==false && 
c_ 4=true)} 
B received=BR 

Fig. 5 Task partitions of DG in Fig. 4 

#pragma omp directives [clause[clause]. .. ] 

Fig. 6 Syntax of OpenMP directive 

no common variables. Consequently, the race condition will 

not appear in the generated code. 

and when all threads finish their executions, initial variables 

will be updated according to the calculation among its dupli

cates. However, every signal will be defined only once in the 

source program so that parallel nodes in the same task share 

We take the form of the infinite loop of elementary itera

tions from [14] as the structure of the generated code. Tasks 

will be generated into the OpenMP structure as the core of 

the iteration. Here we only give the method translating tasks. 

Firstly, every node are translated into C code block. Secondly, 



#pragma omp sections [clause[[,] clause] ... ] 

[ #pragma omp section] 
structured-block 

[#pragma omp section 
structured-block 

Fig. 7 Syntax of directive parallel sections 

each translated code block is encircled in the directive 

"#pragma omp section". Tuen, all blocks belonging to the 

same task will be encircled by directive "#pragma omp paral

lel sections". Finally, the sequential order of these blocks will 

be determined according to the total order specified among 

tasks. Note that the initial and tenninal node of DG are re

spectivel y put in the front and the rear of the iteration and 

initial assignments to the memory signais should be put be

fore the iteration part. 

According to the method given above, fragment of the pro

gram in Fig. 3 can be translated to the OpenMP structure, 

shown in Fig. 8. We can see that sequential code is generated 

according to the order of the tasks. Since task2, task3, and 

task4 hare multiple code blocks, the corresponding OpenMP 

directives "#pragma omp parallel sections" are respectively 

generated. Code blocks which can be executed in parallel 

are encircled in the directive "#pragma omp section". Note 

that although assignments to the memory signal Adelay and 

Bdelay are not shown in Fig. 8, the value of these two signais 

can be determined when they are on the right-hand side of the 

assignment statement, as Section 3.2 has indicated. 

6 Conclusion and future works 

Tiùs paper presented a methodology transforming en

dochronous Signal program (using core syntax) to OpenMP

based C code. First, the translation of Signal core primitives 

to code blocks of synchronous guarded action was described. 

Tuen, the formai definition of DG was presented, used to ex

plore the implicit concurrency. From DG, the definition of 

task was given. Nodes of DG can be partitioned into tasks. 

Tasks will be executed in sequence while in each task, nodes 

can be executed in parallel. Finally, the method translating 

tasks into OpenMP-based C code was introduced. Using the 

approach, the generated program can run on multi-core pro

cessors, increasing the utilization of computation resources. 

Moreover, since the generation target OpenMP is a multi

platform standard, few modifications are needed for multi

platform execution. 

However, several improvements can be accomplished from 

read(A); read(B); read(R); 
C l =true· 
#�agma 'omp parallel sections { 

#pragma omp parallel section { 
if(C_l=true && A==true){ 

AT=A; 

C 3=trne;}} 
#pragm;- omp parallel section { 
if( C _ l =trne && B==trne ){ 

BT=B; 
C 4=true;}} 

#pragm;- omp parallel section { 
if( C _ l =true && R==true) { 

RT=not R; 
C_2=true;}} 

#pragma omp parallel sections { 
#pragma omp parallel section { 
if( C _3=true) { 

AR=AT;} 
if(C_3=false && C_l=true){ 

AR=Adelay;}} 
#pragma omp parallel section { 
if( C _ 4=true) { 

BR=BT;} 
if( C _ 4=false && C _ l =true) { 

BR=Bdelay;}} 

#pragma omp parallel sections { 
#pragma omp parallel section { 
if(C_2=true){ 

A_received=RT;} 
if(C_2=false && C_l=true){ 

A_recevied=AR;}} 
#pragma omp parallel section { 
if(C_2=true){ 

B _received=RT;} 
if(C_2=false && C_4=true){ 

B_received=BR;}} 

Fig. 8 OpenMP-based C code corresponding to the Signal program frag
ment in Fig. 3 

the current study. For instance, the method proposed in this 

paper does not allow the parallel execution among tasks, 

which may restrict the possibility of generating more effi

cient code. Another problem is that the methodology does 

not support the transformation of weakly endochronous Sig

nal program, which limits the practicality of the study. In the 

future work, we will study how to check weak endochrony 

and generate deterministic code from weakly endochronous 

programs. Moreover, Signal provides arrays of processes to 

handle data arrays which is suitable for parallel execution. To 

generate better OpenMP code for these features is also one 

of our objectives. 
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