
Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12684

To link to this article : DOI :10.1007/s11704-013-3906-4
URL : http://dx.doi.org/10.1007/s11704-013-3906-4

To cite this version : Hu, Kai and Zhang, Teng and Yang, Zhibin
Multi-threaded code generation from Signal program to OpenMP.
(2013) Frontiers of Computer Science in China, vol. 7 (n° 5). pp. 617-
626. ISSN 1673-7350

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12684/
http://dx.doi.org/10.1007/s11704-013-3906-4
mailto:staff-oatao@listes-diff.inp-toulouse.fr

DOi 10.1007/sl1704-013-3906-4

Multi-threaded code generation from Signal

program to OpenMP

Kai HU (01
, Teng ZHANG2

, Zhibin YANG2
,
3

1 State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China

2 School of Computer Science and Engineering, Beihang University, Beijing 100191, China

3 !RIT-CNRS, Université de Toulouse, Toulouse 31062, France

1 Introduction
Abstract The use of multi-core processors will become a

trend in safety c1itical systems. For safe execution of multi-

threaded code, automatic code generation from formal spec-

ification is a desirable method. Signal, a synchronous lan

guage dedicated for the functional description of safety crit

ical systems, provides soundness semantics for determinis

tic concurrency. Although sequential code generation of Sig

nal has been implemented in Polychrony compiler, deter

ministic multi-threaded code generation strategy is still far

from mature. Moreover, existing code generation methods

use certain multi-thread library, which limits the cross plat

form executions. OpenMP is an application program inter

face (API) standard for parallel programming, supported by

several mainstream compilers from different platforms. This

paper presents a methodology translating Signal program to

OpenMP-based multi-threaded C code. First, the intermedi

ate representation of the core syntax of Signal using syn

chronous guarded actions is defined. Then, according to the

compositional semantics of Signal equations, the Signal pro

gram is synthesized to dependency graph (DG). After par

allel tasks are extracted from dependency graph, the Signal

pro gram can be finally translated into OpenMP-based C code

which can be executed on multiple platforms.

Keywords multi-thread, synchronous language, Signal,

code generation, OpenMP

E-mail: hukai@buaa.edu.cn

Multi-core processors have been widely used in high

performance computing and universal computing. With the

increase of functional and non-functional demands, multi

core architecture will become indispensable in safety critical

systems such as avionics, aerospace and automobile control.

Multi-threaded software is necessary to make full use of

computing resources of multi-core processors. At present,

two types of strategies have been developed to aid program

ming multi-threaded software. One is application pro gram in

terfaces (APls) and libra1ies provided by Unix-like OS [l]

and Windows [2]; the other includes several parallel program

ming technologies such as MPI [3] for the multi-processor

distributed system, and OpenMP [4] and Intel TBB [5] for

the shared memory architecture which provides mechanism

to describe high level parallel algorithm.

However, these two strategies fail to satisfy the strict quan

titative indicators of functional and non-functional properties

demanded in safety critical systems. If the executions of the

embedded software are non-deterministic, they may cause

undesirable consequences such as delay of reactions and race

conditions. ln addition, parallel programming is error-prone

because programmers have to specify the synchronization

and resources sharing among threads. This will bring the

multi-threaded coding for safety-critical applications a high

risk programming activity [6].

To solve this problem, using model-based development

and automatic code generation technology based on formal

methods has become a trend in academics and industries.

One of the available formal methods used in safety critical

systems is the synchronous language (7, 8], built on a math

ematical model combining synchronous hypothesis and de

terministic concurrency. In synchronous hypothesis, time is

abstracted as partial discrete logical time series and actions

executed by the system are abstracted as discrete steps of

computing. The input, computation and the output take no

time at each instant (the unit of discrete logical time). Due

to the abstract time model, the inherent functional proper

ties are preserved, which makes synchronous languages suit

able for the functional design of systems. The mainstream

synchronous languages include Esterel [9], Lustre [10], and

Signal [11] among which Signal is a multi-clocked language

that no global clock is pre-defined and every signal has its

own clock. Compared to the mono-clocked synchronous lan

guages, multi-clocked model is more sui table for the descrip

tion of distributed systems and multi-core systems.

Endochrony [12] and weak endochrony [13] properties

have been proposed to generate deterministic code from Sig

nal. In the endochronous Signal program, the clock of each

signal can be computed from a "root clock". The Polychrony

compiler [14, 15] not only supports the sequential code gen

eration, but also provides the fonction of multi-threaded code

generation from the endochronous program, based on the

clustering method. According to the data dependency rela

tions, the Signal program is divided into tasks which will be

"forked" as threads at the runtime. These threads will com

municate with each other by the "wait-notify" system call

while in each thread the sequential code will be executed.

However, there are still some implicit concurrencies in the

program which may not be discovered and the use of "wait

notify" takes time in the synchronization among threads.

Weak endochrony property, as its name implies, is less

strict than endochrony. If the relation among signais meets

the full-diamond condition (13], it is possible to generate de

terministic multi-threaded code. [16] proposes a methodol

ogy checking weak endochrony property based on bounded

model-checking. Since the model-checking method is ex

pensive for the code generation, the paper proposes another

method based on the isochrony [17] property which is suit

able for the compositional design. This method, however,

cannot fully caver all the weakly endochronous programs.

(18] proposes a methodology generating deterministic multi

threaded code from weakly endochronous program based on

synchronous flow dependence graphs [19]. Every statement

in the program corresponds to a thread and the threads syn-

chronize with each other based on "wait-notify" system call.

On the basis of the atom theory proposed in [13,20] presents a

general method to check weak endochrony on multi-clocked

synchronous programs. The corresponding strategy of multi

threaded code generation is given in [21]. However, some re

strictions must be met. For instance, data types of the pro

gram interface should be finite and delay equations should

be replaced by the clock relation equations. Therefore, some

weakly endochronous programs may be rejected.

Another strain of methodology is proposed in [22]. It

translates synchronous guarded actions, an intermediate rep

resentation for mono-clocked synchronous languages, into

OpenMP-based multi-threaded program. The synchronous

guarded actions are first translated into dependency graph

(DG) and then, from the DG, tasks are divided for the parallel

execution. Finally, OpenMP-based C code can be generated

according to the task partition. Since OpenMP has been im

plemented by several compilers from different OS, the gener

ated code can be executed on multiple platforms.

As an API standard for parallel programming, OpenMP

provides abundant mechanism for the description of high

level parallel algorithms. The newest version of OpenMP

supports fine-grained scheduling and task balancing which

can increase the performance of the program. However, few

studies of multi-threaded code generation for Signal have

chosen OpenMP as the target language. Drawing on the idea

presented in [22], this paper introduces a methodology dis

covering the implicit parallelism from the Signal program and

translating the endochronous Signal program to OpenMP

based C code. However, some vital changes are made to fit

the characteristics of Signal. Firstly, while [22] directly trans

lates the program written by synchronous guarded actions,

p1imitive constructs in Signal are needed to be first translated

into representation of synchronous guarded actions. With re

gard to this, some new f eatures are added to synchronous

guarded actions. For instance, in order to represent implicit

clock relations defined in each primitive construct, Boolean

variables representing the clocks are introduced. Moreover,

in [22], action dependency grpah (ADG) is a bipartite graph

in which variables and guarded actions are vertices. This pa

per proposes a DAG (directed acyclic graph)-like form of DG

in which nodes are guarded actions and edges represent the

dependency relations between nodes.

The paper is structured as follows. An informa! introduc

tion to the Signal is provided in Section 2. In Section 3,

the paper proposes an intermediate representation of the core

syntax of Signal using synchronous guarded actions. Based

on the compositional semantics and data dependency rela-

tions, the formal definition of DG is given. In Section 4,

methods of finding the implicit parallelism of the Signal pro

gram and the task partition from DG are proposed. Finally, in

Section 5, the translation from partitioned tasks to OpenMP

based C code is defined and an example is analyzed to vali

date the methodology proposed in this paper.

2 Introduction to Signal

2.1 Syntax and conesponding semantics

Apart from primitive constructs listed in Table 1, Signal

also provides other extended constructs such as the dock

operator "/\" and memory operator "cell". Moreover, nested

process, module and other mechanisms are defined in Signal

to specify the large system with components at various rates.

The details of the syntax can be refened in [23].

Relations among signals and their docks are defined as

equations in Signal. The basic unit of a Signal program,

called process, consists of a set of equations. Two basic oper

ators, respectively called synchronous composition and local

de.finition, are applied to the process. The syntax and cone-

As mentioned in Section 1, time is abstracted and the behav- sponding semantics are shown in Table 2.

iors of the system are divided into a discrete series of instants. Table 2 Piimitive operations on the process

At each instant, the input, computing and output are executed

instantaneously and simultaneously. The unbounded series of

typed values are called signais. Signals in the program can be

present or absent at each instant and the dock of a signal is

defined as the series of subscripts at which instant the signal

is present.

In Signal, primitive constructs (core syntax) are provided

to express the relations between signals, defined in Table 1.

Note that the dock of signal sis denoted as '"'s".

Operators in Signal not only depict the data dependency

relations but also imply dock relations among signais. Ac

cording to the dock relations, operators can be divided into

two types, mono-docked operators and multi-docked opera

tors. In equations of mono-docked operators, induding Re

lation and Delay, operand signals are synchronous, that is, at

any instant, all signais will be present or absent at the same

time. In contrast, operand signals of multi-clocked operators,

such as Sampling and Merge, may have different docks. For

instance, in the Sampling equation, shown in Table 1, the left

hand side value O will be present only when the right-hand

side value sl and s2 are present and s2 evaluates to true.

Table 1 P1imitive constrncts of Signal

Name Syntax Informa! semantics

Relation O := /(sl, s2, When sl, s2, ... , sn are present, 0 is

... , sn) present and the value is /(sl, s2, ... , sn);

otherwise signal Ois absent

Delay O := sl $ init r. The docks of O and sl are equal; when sl

is present, the value of O is the previous

present value of sl; the initial value of 0

is C

Sampling O := sl when s2 0 will be present and evaluated to sl only

when s l and s2 are present and s2 evaluates

to true

Merge O := sl default When sl is present, 0 is present and evalu-

s2 ated to sl; other\vise when s2 is present, 0

is present and evaluated to s2; if neither sl

nor s2 is present, signal O is absent

Name Syntax

Synchronous Pl Q

composition

Local defini- P where t_l sl

tion ... t_n sn; end

lnfo1mal semantics

P and Q are processes. The behavior of

PIQ is the conjunction of the mutual be

haviors of P and Q [24]

Pis a process and sl ... sn are signais.

The scope of s 1, ... , sn is restricted to P

which means they are not visible outside

P[24]

From the introduction given above, we can give the ab

stract syntax process, shown as below:

P, Q ::= x := yfzlPIQIP/x

The process (P and Q) consists of the synchronous compo

sition (PIQ) of dataflow equations. P/x is the local definition

of signals. Dataflow equation "x := yfz" represents that the

value of xis decided by the input signal y, z and the operation

f on them.

To simplify the translation, this paper sets a few restric

tions on the source Signal program: all equations are w1it

ten in primitive constructs; every signal can only be defined

once in the program [24]; all equations are in the same pro

cess, which means that there is no subprocess in the Signal

program. Moreover, in Signal, a program is a process and

shares the same syntax [24]. In the remainder of the paper,

the source program is a flattened process written in primitive

constructs.

Two IDEs, RT-builder [25] and Polychrony [26] are based

on Signal. The former one is commercial version and Poly

chrony is open source for academic use. The code generated

by Polychrony compiler takes the form of the infinite loop of

elementary iterations. In each iteration, the program will read

from the input, compute and write to the output. More details

of this code generation principle can be found in [14]. In this

paper, we will use the iteration as the execution model of the

generated code.

2.2 An example of Signal

3 Intermediate representation for primitive
A Signal program presented in [24] called ABRO is used to constructs and the program synthesis method
illustrate the code generation in the paper. Figure 1 is a finite

state machine specification of the ABRO process. Due to the declarative feature of Signal, one of the indispens-

Fig. 1 A finite state machine specification of the ABRO process

ABRO emits signal O when input signals A and B have

been received. When input signal Ris received, ABRO cornes

back to the initial state and begins to wait the inputs. Once 0

has been emitted, it will not be emitted again until R has ar

rived to reset the state. The original version of the Signal pro

gram of ABRO can be found in [24]. Here we give a modified

version, shown in Fig. 2.

1 : process ABRO=
2: (? boolean A, B, R; ! event O ;)
3: (1A _received "= B _received "=after _fi_ until_ 0
4: A received "= A "= B "=R
5: RT := not R when R
6: A received :=RTdefaultAR
7: AT:=A whenA
8: AR :=ATdefault Adelay
9: Adelay: = A_received $ init false
10: IBT:= BwhenB
11: 1 B _received := RT default BR
12: I BR := BT default Bdelay
13: 1 Bdelay := B _received $ init false
14: from R before O := not O default RR
15: RR :,;-Re defauît after R until 0
16: Re := Rwhen R

- - -

17: after R until O := from R before O $ init true
18: 0 :=true when ABR

- - -

19: ABR :=A received whenArr
20: Arr:= B _received when after_R_until_OI)
21: where
22: boolean A received, B received, from R before 0
23: ,Adelay, Bdelay, AR, BR, RR, ABR, Arr, after_R_until_O
24: ,AT, BT, RT, Re; end;

Fig. 2 Signal program of ABRO process

In the process ABRO, A, B, Rare Boolean typed input sig

nals and O is event typed output signal, as shown in Line 2.

Line 3 to Line 20 are dataflow equations specifying the dock

and value relations among signals. Lines 3 and 4 synchro

nize the input signals A, B, R with the intermediate signals

A_received, B_received and after_R_until_O. By analyzing

the dock relations among signals, it can be deduced that the

dock of input signals is the only root dock of this program,

so the pro gram is endochronous.

able steps when generating imperative code is to translate the

source program into an intermediate form with the informa

tion of clock hierarchy and data dependency relations. Sec

tion 3.1 presents a method translating primitive constructs of

Signal into the code block of synchronous guarded actions

which is used to represent the clock and data dependencies

among the operands of equations. To represent the data de

pendency relations for the whole program, another interme

diate form called DG is defined in Section 3.2. Implicit con

currency of the program can be then detected by analyzing the

DG, which will be proposed in Section 4. Note that the source

program to be translated should be endochronous. Based on

the definition given in [18], the informal description of en

dochrony is: a Signal program is endochronous if and only

if the clock of all signals can be computed according to the

intemal clock relations and no extemal environment runtime

information is needed, which equivalently means that there

will be a root dock in the program.

3.1 Synchronous guarded actions for primitive constructs

Based on the semantics of core syntax given in Section 2, the

synchronous guarded actions is defined as below, which is

different from [22]:

A synchronous guarded action is a four-tuple (R, L, B, 0).

Ris the set of signals which represent the right-hand side val

ues of the primitive constructs. L is the set of the left-hand

side values. B is the code block defined as (G, A), taking the

form "if G thenA". G is a Boolean expression and Ais the set

of actions to be executed when G holds. 0 is the output set

of the signals which can be used in other blocks' right-hand

side values.

There are three kinds of signals: input, output and intenne

diate signals. Although input signals cannot be the left-hand

side value of the equation, the dock relations can be specified

to decide at which instants the value can be read. Intermediate

signals and output signals can be the left-hand and right-hand

side value of the equation.

The synchronous guarded actions representations of the

core syntax are defined below. We use syntax of C as the

style of pseudo code in the block and the dock of signal "s"

is denoted as "C_s". Note that before constructing blocks for

each equation in the program, dock analysis needs to be com

pleted to divide all signals into dock equivalence classes so

that synchronous signais will have the same clock represen

tation in each block.

a) 0 := f(sl, s2, ... , sn)

Right-hand side signais: sl, s2, ... , sn, Co

Left-hand side signal: 0

if(Co==true)

0 = j(sl, s2, ... , sn);

Output of the block: 0

In the block above, "f" is an n-ary instant operator. The

right-hand side operands of the block are the operands of op

erator "f" and the left-hand side operand of the block is O.

The implicit clock relation is '"'O = A s1 = · · · = A sn" while

C_O is defined as the common dock of these signals. Signals

on the right-hand side are needed to compute the value of O.

The Boolean expression in the block, "C_O= =true", means

that the O can be computed only when O is present at this in

stant. The Output of the block depicts that after the execution

of the code block, 0 can be used as a right-hand side value

and if Ois an output signal, the write action can be executed.

b) 0 := s1 default s2

Right-hand side signais: C_sl, sl

Left-hand side signais: 0, C_0

if(C_sl==true){

0 = s1;

Co=tme;

Output of the block: C_0, 0

Right-hand side signais: C_sl, C_s2, s2

Left-hand side signais: 0, C_0

if(C_sl==false && C_s2==tme){

0= s2;

C_O=true;

Output of the block: C_0, 0

From the semantics of operator Merge, two corresponding

code blocks are constructed. Signal s1 is prior to s2. If s1 is

present, 0 is assigned to the value of sl. If sl is absent and

s2 is present, 0 is assigned to the value of s2. Note that apart

from the assignment to 0, the dock of 0, denoted by C_O

should be assigned to trne if s1 or s2 is present.

c) 0 := s1 when s2

Right-hand side signais: s2, C_s1, C_s2

Left-hand side signais: 0, C_0

if(C_sl==true && C_s2==true && s2==true){

0 = si; C_O=tme;

Output of the block: C_0, 0

From the block shown above, we can see that if sl and s2

are present and s2 evaluates to true (which means type of s2

should be Boolean or event), 0 is present and evaluates to the

value of sl .

d) 0 := s1 $ init c

Right-hand side signais: C _O

Left-hand side signais: Null

if(G_O==true){

}

Output of the block: Null

For operator Delay, since Delay is a mono-docked opera

tor, s1 and 0 have the same dock, which means that when

sl is present at the instant, 0 is also present and can be used

as right-hand side value. The dock of 0 and s1, denoted as

C_O, is the single right-hand side signal. However, the corre

sponding code block has no action since no data dependency

is defined in the equation. How to assign value to the memory

signal will be introduced in Section 3.2.

As for the input signals in the root dock set, at the begin

ning of each iteration, read actions should be executed. The

corresponding dock should also be set to true.

Right-hand side signais: Null

Left-hand side signais: i

{ read(i); C _i=true;}

Output of the block: i, C_i

For the input signal not belonging to the root dock set, the

dock can be extracted from the dock calculation, denoted as

C_s. If C_s evaluates to true, the read actions can be executed

so that the read will be nested in the same block assigning

C_s to true.

Left-hand side signais: i, other signais

if(...){

other assignments

C_s=tme;

read(i);

Output of the block: i, other signais

Two other primitive constructs indude the local definition

(P/x) and synchronous composition (PIQ). They have no cor

responding code blocks of synchronous guarded actions. The

local definition operator enables one to restrict the scope of

a signal to a process [24]. Intermediate signais are defined in

this part and they are invisible from the outside of the process.

Synchronous composition is the union of equations defined

in the program. Equations communicate with each other by

common signal variables. The behavior of the program can

be seen as the conjunction of mutual behaviors of all equa

tions [24]. Based on the semantics of synchronous composi-

tion, code blocks of synchronous guarded actions generated for Delay equation has no left-hand side value. In this case,

from the program will be composed into the DG according tests on whether docks of memory signais evaluate to true are

to the data dependencies among code blocks of synchronous included in the guard condition of b 1 and no precedence re

guarded actions, used to describe the behavior of the whole lation needs to be specified between nodes respectively con-

program and explore the implicit concurrencies. taining b 1 and b2.

3.2 Synthesis method based on DG

After generating the code block of synchronous guarded ac

tions for each equation in the program, DG can be con

structed. All signals belonging to the same class are syn

chronous. The definition of DG is given below: DG is defined

as (NS, �). NS is the set of nodes which represents the code

block of synchronous guarded actions. � is the precedence

relation between nodes defined over NS as follow: s 1 � s2

if and only if some signais exist both in right-hand side of

s2 and left-hand side of sl, which indicates that to execute

the code in s2, we first need to get the execution result of

sl. Note that two code blocks for the operator Merge defined

in Section 3.1 will be treated as one node in DG. A DG is

correct if every cycle "sO � · · · � sn � sO" is a pseudo cy

cle: the conjunction of all guard expression of synchronous

guarded action sO, ... , sn involved in the cycle is false. From

this, it is also easy to know that DG is not strictly a DAG

because there may be pseudo cycle in the graph. Note that if

dependencies from docks to their corresponding signais (in

put signais) are added, dock constraints are set. In this case,

values read from the environment must meet the constraints

to guarantee the correct execution.

To generate a complete DG, some situations need to be

considered. Sorne blocks are for the read of input signal with

no right-hand side signal. These nodes will be composed into

a single node called the initial node. Since there is no prece

dence among these nodes, they can be arranged at any order

when getting composed. Furthermore, the dock of the root

clock class, denoted as C_l, has to be set to true in the front

of the initial node. At the end of iteration, a terminal node

is also needed in which every signal on the left-hand side of

the Delay equation(denoted as memory signais) will be set to

new value under the condition that it has been present at the

last iteration. These blocks are then synthesized into the ter

minal node in which all the docks of the clock equivalence

classes are also needed to be set to false. Note that the initial

assignments to memory signais needs to be executed before

the iteration begins. Furthermore, according to the definition

given in Section 3. 1, some blocks (denoted as bl) may have

the right-hand side signals which are memory signals but the

code block of synchronous guarded actions (denoted as b2)

Redundancies in the generated DG can be found as fol-

lows:

1) The Boolean sub expressions may be duplicated in the

condition expression of the code blocks. For instance, ac

cording to the algorithm given in Section 3.1, the corre

sponding condition of the equation "c := b when not b" is

"C_b==true&& C_b==true &&b==false".

2) If there are blocks with signais in the same clock equiva

lence class as the left-hand side value, there will be duplicated

assignments to the dock.

To eliminate these redundancies, the duplicated Boolean

expressions are to be deleted first. Then traverse from the ini

tial node, if there is a clock assignment in a node, the same

assignment in its subsequent nodes will be deleted.

4 Task partition strategy

As defined in Section 3, DG is a kind of DAG on which prece

dence relation is defined among nodes. Informally, the prece

dence relation indicates the dependency between nodes. If no

precedence relation exists between two nodes, they can run in

parallel. In this section, we partition a set of nodes of DG into

tasks. The precedence relation on tasks is compatible with the

precedence relation on nodes.

Task is defined as a set of nodes belonging to NS of DG.

TS is a two-tuple (T, �),in which T is a partition of NS and

� is the precedence relation among tasks on T. A task t of

T is an anti-chain in the reflexive transitive closure -v0 of �

(i.e., nodes in a task cannot be compared: (Vt E T)(Vnl E

t)(Vn2 E NS)(nl � n2) ⇒ ((nl = n2) V (n2 (J. t)). Among

tasks belonging to T, tl � t2 if and only if there exists at

least one node in t2 which is preceded by nodes in tl. Note

that although cycle checking has been done after the con

struction of DG, there may be pseudo cycles of tasks since

pseudo cycles are allowed in DG. To deal with this problem,

the guard of a task t is defined as the disjunction of the guards

of nodes belonging to t. If the conjunction of ail these guards

of tasks involved in the cycle is false, the cycle is a pseudo

cycle. Because of pseudo cycles, the result of some nodes in

t2 may be required by some nodes in t1 (when some condi

tion C is true) and conversely (when the condition C is false).

In this paper we only consider DAG of nodes: the processing

of programs with cycles and pseudo cycles is not described
here. One can then use a topological sorting to partition nodes
into tasks so that the result of the partition is a total order of
tasks: for all tasks t1, t2, ... , tn belonging to T, a series of
them, t 1 -» · · · -» tm

n
-i -» lm11 exists. As a result, no task pair

will be allowed to execute in parallel. Here we illustrate the
task partition with the example in Section 2.

Part of the code is shown in Fig. 3. Lines 3 and 4 show
the root clock of the program is the clock of input signals A,

B and R. Synchronized with these signals, intermediate sig
nal A_received, B_received and after_R_until_O also belong
to the root class. The initial node, as a result, contains the
read of the input signals and the assignment to the root clock
C _l. Tuen for each equation in the program, corresponding
code block of synchronous guarded actions are generated. Fi
nally, these nodes are composed into the DG shown in Fig. 4.
Arrows in the figure represent the precedence relation "--+".
Note that since Adelay and Bdelay are memory signals and
the guard expression "C_l==true" implies that Adelay and
Bdelay are present (Adelay and Bdelay are in the root clock

3: (1 A_received "= B_received "= after_R_until_O
4: 1 A_received "= A "= B "= R

5: 1 RT := not R when R

6: 1 A _received := RT default AR

7: 1 AT := A when A

8: 1 AR := AT default Adelay
9: 1 Adelay := A_received $ init false
l 0: 1 ET := B when B

11: 1 B _received := RT default BR

12: I BR := ET default Bdelay
13: 1 Bdelay := B _received $ init fa!se

Fig. 3 Fragment of ABRO process

H{C 3=Jitlse &
C J�true H
JfR=Adclay;

6:
rnc 1°:o::::-true)I
A receîvc<lzRT:

l. -

7:

.,:

ure 1 �truc &&
B·--··'fruc) {

BT=B;
c_4.,.,.frue:

HlC 4=fülsc &&
C · l ;;"'·truc) {
IJR=Bdelay�

If(C 2,·t····trne)'
lJ fcccivcd=RT:

l -

Fig. 4 DG con-esponding to Signal program in Fig. 3

class), corresponding nodes for two Delay equations are
omitted and there is no arrow explicitly illustrating the prece
dence relation between Adelay and AR nor between Bdelay
and BR.

The result of the task partition is shown in Fig. 5. Nodes of
DG are divided into four tasks. Arrows in the figure illustrate
the total order among four tasks: taskl will be executed first
and task4 will be the last one to be executed. Nodes in the
same task can be executed in parallel. For instance, in task2
there are three nodes preceded by the node in taskl. How
ever, there is no precedence relations among these nodes so
that they can be executed in parallel.

After the task partition, the generated tasks will be used
for the OpenMP code generation which will be presented in
Section 5.

5 OpenMP based C code generation and case

study

OpenMP, an API for shared-memory parallel programming in
C/C++ and FORTRAN, provides users with several mecha
nisms such as compiler directive, programming interface and
environment variables for the high level description of paral
lel algorithms. This section will introduce the method map
ping tasks partitioned in Section 4 to the OpenMP-based C
code.

The basic syntax of directives in OpenMP is shown in
Fig. 6. There are several directives in OpenMP. For instance,
directive "parallel for" is used for the parallelization of "for"
loop; directive "parallel sections" is used to specify the code
blocks which can be executed in parallel. ln OpenMP 3.0,
directive "task" is added to support the parallelization of ir
regular data, iteration and recursive call. Since actions of
code blocks are simple computations, we choose the directive
"parallel sections" for the parallelization, shown in Fig. 7.
The code blocks executed in parallel are encircled in direc
tive "#pragma omp section" respectively.

Moreover, race condition will occur when multiple threads
can access shared variables at the same time, which will make
the result of the execution non-deterministic. Clauses, such
as p1ivate, shared and reduction, are provided to specify the
variable scope and sharing property to handle this problem.
Clause private (list) is used to declare that each thread has its
own duplicate of the variables in the list. Clause shared (list)
declares the list of shared variables among threads. Clause re
duction (operator:list) specifies an operation on one or a list
of variables. Each thread has duplicates of variables in the list

Task2

If(C _ 1 ==true && A==true) {
RT=notR;

If(C _ 1 =truc && B==true) {
BT=B;

If(C _3==true){
AR=AT;

}

If(C _ 3==false &&
C_l=true)}
AR=Adelay;

6:
If(C _ 2==true) {

C_2=true;

}

A _received=RT;

}

If(C_2==false &&
C_l=true)}
A received=AR

Task3

Task4

C_4=true;

}

5:
If(C_ 4=true){
BR=BT;

If(C _ 4=false &&
C_l=true)}
BR=Bdelay;

}

7:
If(C _ 2==true) {
B _received=RT;

}

lf(C_2==false &&
c_ 4=true)}
B received=BR

Fig. 5 Task partitions of DG in Fig. 4

#pragma omp directives [clause[clause]. ..]

Fig. 6 Syntax of OpenMP directive

no common variables. Consequently, the race condition will

not appear in the generated code.

and when all threads finish their executions, initial variables

will be updated according to the calculation among its dupli

cates. However, every signal will be defined only once in the

source program so that parallel nodes in the same task share

We take the form of the infinite loop of elementary itera

tions from [14] as the structure of the generated code. Tasks

will be generated into the OpenMP structure as the core of

the iteration. Here we only give the method translating tasks.

Firstly, every node are translated into C code block. Secondly,

#pragma omp sections [clause[[,] clause] ...]

[#pragma omp section]
structured-block

[#pragma omp section
structured-block

Fig. 7 Syntax of directive parallel sections

each translated code block is encircled in the directive

"#pragma omp section". Tuen, all blocks belonging to the

same task will be encircled by directive "#pragma omp paral

lel sections". Finally, the sequential order of these blocks will

be determined according to the total order specified among

tasks. Note that the initial and tenninal node of DG are re

spectivel y put in the front and the rear of the iteration and

initial assignments to the memory signais should be put be

fore the iteration part.

According to the method given above, fragment of the pro

gram in Fig. 3 can be translated to the OpenMP structure,

shown in Fig. 8. We can see that sequential code is generated

according to the order of the tasks. Since task2, task3, and

task4 hare multiple code blocks, the corresponding OpenMP

directives "#pragma omp parallel sections" are respectively

generated. Code blocks which can be executed in parallel

are encircled in the directive "#pragma omp section". Note

that although assignments to the memory signal Adelay and

Bdelay are not shown in Fig. 8, the value of these two signais

can be determined when they are on the right-hand side of the

assignment statement, as Section 3.2 has indicated.

6 Conclusion and future works

Tiùs paper presented a methodology transforming en

dochronous Signal program (using core syntax) to OpenMP

based C code. First, the translation of Signal core primitives

to code blocks of synchronous guarded action was described.

Tuen, the formai definition of DG was presented, used to ex

plore the implicit concurrency. From DG, the definition of

task was given. Nodes of DG can be partitioned into tasks.

Tasks will be executed in sequence while in each task, nodes

can be executed in parallel. Finally, the method translating

tasks into OpenMP-based C code was introduced. Using the

approach, the generated program can run on multi-core pro

cessors, increasing the utilization of computation resources.

Moreover, since the generation target OpenMP is a multi

platform standard, few modifications are needed for multi

platform execution.

However, several improvements can be accomplished from

read(A); read(B); read(R);
C l =true·
#�agma 'omp parallel sections {

#pragma omp parallel section {
if(C_l=true && A==true){

AT=A;

C 3=trne;}}
#pragm;- omp parallel section {
if(C _ l =trne && B==trne){

BT=B;
C 4=true;}}

#pragm;- omp parallel section {
if(C _ l =true && R==true) {

RT=not R;
C_2=true;}}

#pragma omp parallel sections {
#pragma omp parallel section {
if(C _3=true) {

AR=AT;}
if(C_3=false && C_l=true){

AR=Adelay;}}
#pragma omp parallel section {
if(C _ 4=true) {

BR=BT;}
if(C _ 4=false && C _ l =true) {

BR=Bdelay;}}

#pragma omp parallel sections {
#pragma omp parallel section {
if(C_2=true){

A_received=RT;}
if(C_2=false && C_l=true){

A_recevied=AR;}}
#pragma omp parallel section {
if(C_2=true){

B _received=RT;}
if(C_2=false && C_4=true){

B_received=BR;}}

Fig. 8 OpenMP-based C code corresponding to the Signal program frag
ment in Fig. 3

the current study. For instance, the method proposed in this

paper does not allow the parallel execution among tasks,

which may restrict the possibility of generating more effi

cient code. Another problem is that the methodology does

not support the transformation of weakly endochronous Sig

nal program, which limits the practicality of the study. In the

future work, we will study how to check weak endochrony

and generate deterministic code from weakly endochronous

programs. Moreover, Signal provides arrays of processes to

handle data arrays which is suitable for parallel execution. To

generate better OpenMP code for these features is also one

of our objectives.

Acknowledgements This work was supported by the National Natural Sci
ence Foundation of China (Grant Nos. 61073013 and 61003017) and the
Aviation Science Foundation of China (2012ZC51025). Grateful acknowl
edgement is made to Mr. Mamoun FILALI-AMINE, Prof. Jean-Pau! BODE-

VEIX from IRIT-CNRS and Prof. Paul Le Guernic from INRIA. They have

given a lot of instructive advice to this paper.

References

l. IEEE POSIX standardization authority. http://standards.ieee.org/regauth/

posix/

2. Microsoft windows threads. http://msdn.rnicrosoft.com/

3. MPI: A message-passing interface standard version 3.0.

http ://www. mpi-forum. org/ docs/mpi-3. 0/mpi 30-report. pdf

4. The OpenMP API specification for parallel programrning.

http :/ / openmp. orgjwp/

5. Intel thread building blocks. http://www.threadingbuildingblocks.org/

6. Lee E A. The problem with threads. Computer, 2006, 39(5): 3 3-42

7. Benveniste A, Berry G. The synchronous approach to reactive and real

time systems. Proceedings of the IEEE, 1991, 79(9): 1270-1282

8. Benveniste A, Caspi P, Edwards S A, Halbwachs N. Le Guernic P, De

Simone R. The synchronous languages 12 years later. Proceedings of

the IEEE, 2003, 91(1): 64-83

9. Berry G, Gonthier G. The esterel synchronous programrning language:

design, semantics, implementation. Science of Computer Program

rning, 1992, 19(2): 87-152

10. Halbwachs N, Caspi P, Raymond P, Pilaud D. The synchronous data

flow programrning language lustre. Proceedings of the IEEE, 1991,

79(9): 1305-1320

11. Le Guernic P, Gautier T, Le Borgne M, Le Maire C. Programrning real

time applications with signal. Proceedings of the IEEE, 1991, 79(9):

1321-1336

12. Le Guernic P, Talpin J P, Le Lann J C. Polychrony for system design.

Journal of Circuits , Systems, and Computers, 2003, 12(3): 261-303

13. Potop-Butucaru D, Caillaud B, Benveniste A. Concurrency in syn

chronous systems. F01mal Methods in System Design, 2006, 28(2):

111-130

14. Besnard L, Gautier T, Talpin J P. Code generation strategies in the

polychrony environment. http://hal.iruia.fr/docs/00/ 37 /24/12/PDF/RR-

6894. pdf

15. Besnard L, Gautier T. Le Guernic P, Talpin J P. Compilation of poly

chronous data flow equations. ln: Synthesis of Embedded Software,

1-40. Springer, 2010

16. Talpin J P, Ouy J, Gautier T, Besnard L , Le Guernic P. Compositional

design of isochronous systems. Science of Computer Programrning,

2012, 77(2): 113-128

17. Benveniste A, Caillaud B, Le Guernic P. Compositionality in dataflow

synchronous languages: specification and distributed code generation.

Inf01mation and Computation, 2000, 16 3(1): 125-171

18. Jose B A, Shukla S K, Patel H D, Talpin J P. On the deterministic multi

threaded software synthesis from polychronous specifications. In: Pro

ceedings of the 6th ACM/IEEE International Conference on Formai

Methods and Models for Co-Design. 2008, 129-138

19. Maffeïs 0, Le Guernic P. Combining dependability with architectural

adaptability by means of the signal language. ln: Static Analysis, 99-

11 O. Sp1inger, 1993

20. Potop-Butucarn D, Sorel Y, Simone d R, Talpin J P. From concurrent

multi-clock programs to detenninistic asynchronous implementations.

Fundamenta Informaticae, 2011, 108(1): 91-118

21. Papailiopoulou V, Potop-Butucaru D, Sorel Y, Simone d R, Besnard

L, Talpin J. From design-time concurrency to effective implementation

parallelism: The multi-clock reactive case. In: Proceedings of the 2011

Electronic System Level Synthesis Conference. 2011, 1--6

22. Baudisch D, Brandt J, Schneider K. Multithreaded code from syn

chronous programs: extracting independent threads for openmp. In:

Proceedings of the 2010 Conference on Design, Automation, and Test

in Europe. 2010, 949-952

23. Besnard L, Gautier T, Le Guernic P. Signal v4-Inria version: reference

manual, 2008

24. Gamatie A. Designing embedded systems with the signal programrning

language. Springer, 2010

25. RT-builder, geensys. http://www.geensys.com/

26. Polychrony. http://www.irisa.fr/espressojPolychrony/

Kai Hu is an associate professor at Bei

hang University, China. He received his

PhD degree from Beihang University

in 2001. From 2001 to 2004, he did

the post-doctoral research at Nanyang

Technological University, Singapore.

Since 2004, he is the leader of the team

of LDMC in the lnstitute of Computer

Architecture(ICA), Beihang university.

His research interests concem embedded real time systems and high

performance computing. He has good cooperation with IRIT and

INRIA Institute of France on study of AADL and synchronous lan

guages.

Teng Zhang received his BE in com

puter science and engineering from

Beihang University in 2011. He is now

the master's degree student at the same

university. His research interests in

clude synchronous languages, model

ing of embedded system and fo1mal

methods.

Zhibin Yang received his PhD degree

from Beihang University, China, in

February 2012. Since April 2012, he

has been a Postdoc in IRIT research

laboratory of University of Toulouse,

France. His research interests include

safety-critical real-time system , formal

verification, AADL, and synchronous

languages.

