264 research outputs found

    Mitochondrial Networking Protects β-Cells From Nutrient-Induced Apoptosis

    Get PDF
    OBJECTIVE: Previous studies have reported that β-cell mitochondria exist as discrete organelles that exhibit heterogeneous bioenergetic capacity. To date, networking activity, and its role in mediating β-cell mitochondrial morphology and function, remains unclear. In this article, we investigate β-cell mitochondrial fusion and fission in detail and report alterations in response to various combinations of nutrients. RESEARCH DESIGN AND METHODS: Using matrix-targeted photoactivatable green fluorescent protein, mitochondria were tagged and tracked in β-cells within intact islets, as isolated cells and as cell lines, revealing frequent fusion and fission events. Manipulations of key mitochondrial dynamics proteins OPA1, DRP1, and Fis1 were tested for their role in β-cell mitochondrial morphology. The combined effects of free fatty acid and glucose on β-cell survival, function, and mitochondrial morphology were explored with relation to alterations in fusion and fission capacity. RESULTS: β-Cell mitochondria are constantly involved in fusion and fission activity that underlies the overall morphology of the organelle. We find that networking activity among mitochondria is capable of distributing a localized green fluorescent protein signal throughout an isolated β-cell, a β-cell within an islet, and an INS1 cell. Under noxious conditions, we find that β-cell mitochondria become fragmented and lose their ability to undergo fusion. Interestingly, manipulations that shift the dynamic balance to favor fusion are able to prevent mitochondrial fragmentation, maintain mitochondrial dynamics, and prevent apoptosis. CONCLUSIONS: These data suggest that alterations in mitochondrial fusion and fission play a critical role in nutrient-induced β-cell apoptosis and may be involved in the pathophysiology of type 2 diabetes.National Institutes of Health (R01HL071629-03, R01DK074778, 5T32DK007201

    Lipopolysaccharides Impair Insulin Gene Expression in Isolated Islets of Langerhans via Toll-Like Receptor-4 and NF-κB Signalling

    Get PDF
    BACKGROUND:Type 2 diabetes is characterized by pancreatic β-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that the signalling cascade activated by lipopolysaccharides (LPS) binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. In this study, we tested the hypothesis that LPS alters insulin gene expression via TLR4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in islets. METHODOLOGY/PRINCIPAL FINDINGS:A 24-h exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of pancreas-duodenum homebox-1 (PDX-1) and mammalian homologue of avian MafA/l-Maf (MafA). Accordingly, LPS exposure also decreased glucose-induced insulin secretion. LPS repression of insulin, PDX-1 and MafA expression, as well as its inhibition of insulin secretion, were not observed in islets from TLR4-deficient mice. LPS inhibition of β-cell gene expression in rat islets was prevented by inhibition of the NF-κB pathway, but not the p38 mitogen-activated protein kinase (p38 MAPK) pathway. CONCLUSIONS/SIGNIFICANCE:Our findings demonstrate that LPS inhibit β-cell gene expression in a TLR4-dependent manner and via NF-κB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function

    BMI is an important driver of beta-cell loss in type 1 diabetes upon diagnosis in 10 to 18-year-old children.

    Get PDF
    OBJECTIVE: Body weight-related insulin resistance probably plays a role in progression to type 1 diabetes, but has an uncertain impact following diagnosis. In this study, we investigated whether BMI measured at diagnosis was an independent predictor of C-peptide decline 1-year post-diagnosis. DESIGN: Multicentre longitudinal study carried out at diagnosis and up to 1-year follow-up. METHODS: Data on C-peptide were collected from seven diabetes centres in Europe. Patients were grouped according to age at diagnosis (5 years 10 years 18 years, n=410). Linear regression was used to investigate whether BMI was an independent predictor of change in fasting C-peptide over 1 year. Models were additionally adjusted for baseline insulin dose and HbA1c. RESULTS: In individuals diagnosed between 0 and 5 years, 5 and 10 years and those diagnosed >18 years, we found no association between BMI and C-peptide decline. In patients aged 10-18 years, higher BMI at baseline was associated with a greater decline in fasting C-peptide over 1 year with a decrease (beta 95% CI; P value) of 0.025 (0.010, 0.041) nM/kg per m(2) higher baseline BMI (P=0.001). This association remained significant after adjusting for gender and differences in HbA1c and insulin dose (beta=0.026, 95% CI=0.0097, 0.042; P=0.002). CONCLUSIONS: These observations indicate that increased body weight and increased insulin demand are associated with more rapid disease progression after diagnosis of type 1 diabetes in an age group 10-18 years. This should be considered in studies of beta-cell function in type 1 diabetes

    The Role of IRE1α in the Degradation of Insulin mRNA in Pancreatic β-Cells

    Get PDF
    The endoplasmic reticulum (ER) is a cellular compartment for the biosynthesis and folding of newly synthesized secretory proteins such as insulin. Perturbations to ER homeostasis cause ER stress and subsequently activate cell signaling pathways, collectively known as the Unfolded Protein Response (UPR). IRE1α is a central component of the UPR. In pancreatic β-cells, IRE1α also functions in the regulation of insulin biosynthesis.Here we report that hyperactivation of IRE1α caused by chronic high glucose treatment or IRE1α overexpression leads to insulin mRNA degradation in pancreatic β-cells. Inhibition of IRE1α signaling using its dominant negative form prevents insulin mRNA degradation. Islets from mice heterozygous for IRE1α retain expression of more insulin mRNA after chronic high glucose treatment than do their wild-type littermates.These results reveal a role of IRE1α in insulin mRNA expression under ER stress conditions caused by chronic high glucose. The rapid degradation of insulin mRNA could provide immediate relief for the ER and free up the translocation machinery. Thus, this mechanism would preserve ER homeostasis and help ensure that the insulin already inside the ER can be properly folded and secreted. This adaptation may be crucial for the maintenance of β-cell homeostasis and may explain why the β-cells of type 2 diabetic patients with chronic hyperglycemia stop producing insulin in the absence of apoptosis. This mechanism may also be involved in suppression of the autoimmune type 1 diabetes by reducing the amount of misfolded insulin, which could be a source of “neo-autoantigens.
    corecore