516 research outputs found
Evaluation of the Effect of Myocardial Localisation Errors on Myocardial Blood Flow Estimates from Myocardial Perfusion MRI
Deleterious Effects of Cold Air Inhalation on Coronary Physiological Indices in Patients With Obstructive Coronary Artery Disease
Background
Cold air inhalation during exercise increases cardiac mortality, but the pathophysiology is unclear. During cold and exercise, dual‐sensor intracoronary wires measured coronary microvascular resistance (MVR) and blood flow velocity (CBF), and cardiac magnetic resonance measured subendocardial perfusion.
Methods and Results
Forty‐two patients (62±9 years) undergoing cardiac catheterization, 32 with obstructive coronary stenoses and 10 without, performed either (1) 5 minutes of cold air inhalation (5°F) or (2) two 5‐minute supine‐cycling periods: 1 at room temperature and 1 during cold air inhalation (5°F) (randomized order). We compared rest and peak stress MVR, CBF, and subendocardial perfusion measurements. In patients with unobstructed coronary arteries (n=10), cold air inhalation at rest decreased MVR by 6% (P=0.41), increasing CBF by 20% (P<0.01). However, in patients with obstructive stenoses (n=10), cold air inhalation at rest increased MVR by 17% (P<0.01), reducing CBF by 3% (P=0.85). Consequently, in patients with obstructive stenoses undergoing the cardiac magnetic resonance protocol (n=10), cold air inhalation reduced subendocardial perfusion (P<0.05). Only patients with obstructive stenoses performed this protocol (n=12). Cycling at room temperature decreased MVR by 29% (P<0.001) and increased CBF by 61% (P<0.001). However, cold air inhalation during cycling blunted these adaptations in MVR (P=0.12) and CBF (P<0.05), an effect attributable to defective early diastolic CBF acceleration (P<0.05) and associated with greater ST‐segment depression (P<0.05).
Conclusions
In patients with obstructive coronary stenoses, cold air inhalation causes deleterious changes in MVR and CBF. These diminish or abolish the normal adaptations during exertion that ordinarily match myocardial blood supply to demand
Developmental Expression and Glucocorticoid Control of the Leptin Receptor in Fetal Ovine Lung.
The effects of endogenous and synthetic glucocorticoids on fetal lung maturation are well-established, although the role of leptin in lung development before birth is unclear. This study examined mRNA and protein levels of the signalling long-form leptin receptor (Ob-Rb) in fetal ovine lungs towards term, and after experimental manipulation of glucocorticoid levels in utero by fetal cortisol infusion or maternal dexamethasone treatment. In fetal ovine lungs, Ob-Rb protein was localised to bronchiolar epithelium, bronchial cartilage, vascular endothelium, alveolar macrophages and type II pneumocytes. Pulmonary Ob-Rb mRNA abundance increased between 100 (0.69 fractional gestational age) and 144 days (0.99) of gestation, and by 2-4-fold in response to fetal cortisol infusion and maternal dexamethasone treatment. In contrast, pulmonary Ob-Rb protein levels decreased near term and were halved by glucocorticoid treatment, without any significant change in phosphorylated signal transducer and activator of transcription-3 (pSTAT3) at Ser727, total STAT3 or the pulmonary pSTAT3:STAT3 ratio. Leptin mRNA was undetectable in fetal ovine lungs at the gestational ages studied. These findings demonstrate differential control of pulmonary Ob-Rb transcript abundance and protein translation, and/or post-translational processing, by glucocorticoids in utero. Localisation of Ob-Rb in the fetal ovine lungs, including alveolar type II pneumocytes, suggests a role for leptin signalling in the control of lung growth and maturation before birth.This work was supported by the Biotechnology and Biological Sciences Research Council (grant numbers S18103 and BB/H01697X/1).This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pone.013611
Effect of Care Guided by Cardiovascular Magnetic Resonance, Myocardial Perfusion Scintigraphy, or NICE Guidelines on Subsequent Unnecessary Angiography Rates : The CE-MARC 2 Randomized Clinical Trial
Importance Among patients with suspected coronary heart disease (CHD), rates of invasive angiography are considered too high. Objective To test the hypothesis that among patients with suspected CHD, cardiovascular magnetic resonance (CMR)–guided care is superior to National Institute for Health and Care Excellence (NICE) guidelines–directed care and myocardial perfusion scintigraphy (MPS)–guided care in reducing unnecessary angiography. Design, Setting, and Participants Multicenter, 3-parallel group, randomized clinical trial using a pragmatic comparative effectiveness design. From 6 UK hospitals, 1202 symptomatic patients with suspected CHD and a CHD pretest likelihood of 10% to 90% were recruited. First randomization was November 23, 2012; last 12-month follow-up was March 12, 2016. Interventions Patients were randomly assigned (240:481:481) to management according to UK NICE guidelines or to guided care based on the results of CMR or MPS testing. Main Outcomes and Measures The primary end point was protocol-defined unnecessary coronary angiography (normal fractional flow reserve >0.8 or quantitative coronary angiography [QCA] showing no percentage diameter stenosis ≥70% in 1 view or ≥50% in 2 orthogonal views in all coronary vessels ≥2.5 mm diameter) within 12 months. Secondary end points included positive angiography, major adverse cardiovascular events (MACEs), and procedural complications. Results Among 1202 symptomatic patients (mean age, 56.3 years [SD, 9.0]; women, 564 [46.9%] ; mean CHD pretest likelihood, 49.5% [SD, 23.8%]), number of patients with invasive coronary angiography after 12 months was 102 in the NICE guidelines group (42.5% [95% CI, 36.2%-49.0%])], 85 in the CMR group (17.7% [95% CI, 14.4%-21.4%]); and 78 in the MPS group (16.2% [95% CI, 13.0%-19.8%]). Study-defined unnecessary angiography occurred in 69 (28.8%) in the NICE guidelines group, 36 (7.5%) in the CMR group, and 34 (7.1%) in the MPS group; adjusted odds ratio of unnecessary angiography: CMR group vs NICE guidelines group, 0.21 (95% CI, 0.12-0.34, P < .001); CMR group vs the MPS group, 1.27 (95% CI, 0.79-2.03, P = .32). Positive angiography proportions were 12.1% (95% CI, 8.2%-16.9%; 29/240 patients) for the NICE guidelines group, 9.8% (95% CI, 7.3%-12.8%; 47/481 patients) for the CMR group, and 8.7% (95% CI, 6.4%-11.6%; 42/481 patients) for the MPS group. A MACE was reported at a minimum of 12 months in 1.7% of patients in the NICE guidelines group, 2.5% in the CMR group, and 2.5% in the MPS group (adjusted hazard ratios: CMR group vs NICE guidelines group, 1.37 [95% CI, 0.52-3.57]; CMR group vs MPS group, 0.95 [95% CI, 0.46-1.95]). Conclusions and Relevance In patients with suspected angina, investigation by CMR resulted in a lower probability of unnecessary angiography within 12 months than NICE guideline–directed care, with no statistically significant difference between CMR and MPS strategies. There were no statistically significant differences in MACE rates. Trial Registration Clinicaltrials.gov Identifier: NCT01664858
Assessment of aortic stiffness by cardiovascular magnetic resonance following the treatment of severe aortic stenosis by TAVI and surgical AVR
Aortic stiffness is increasingly used as an independent predictor of adverse cardiovascular outcomes. We sought to compare the impact of transcatheter aortic valve implantation (TAVI) and surgical aortic valve replacement (SAVR) upon aortic vascular function using cardiovascular magnetic resonance (CMR) measurements of aortic distensibility and pulse wave velocity (PWV).A 1.5 T CMR scan was performed pre-operatively and at 6 m post-intervention in 72 patients (32 TAVI, 40 SAVR; age 76 ± 8 years) with high-risk symptomatic severe aortic stenosis. Distensibility of the ascending and descending thoracic aorta and aortic pulse wave velocity were determined at both time points. TAVI and SAVR patients were comparable for gender, blood pressure and left ventricular ejection fraction. The TAVI group were older (81 ± 6.3 vs. 72.8 ± 7.0 years, p < 0.05) with a higher EuroSCORE II (5.7 ± 5.6 vs. 1.5 ± 1.0 %, p < 0.05). At 6 m, SAVR was associated with a significant decrease in distensibility of the ascending aorta (1.95 ± 1.15 vs. 1.57 ± 0.68 × 10(-3)mmHg(-1), p = 0.044) and of the descending thoracic aorta (3.05 ± 1.12 vs. 2.66 ± 1.00 × 10(-3)mmHg(-1), p = 0.018), with a significant increase in PWV (6.38 ± 4.47 vs. 11.01 ± 5.75 ms(-1), p = 0.001). Following TAVI, there was no change in distensibility of the ascending aorta (1.96 ± 1.51 vs. 1.72 ± 0.78 × 10(-3)mmHg(-1), p = 0.380), descending thoracic aorta (2.69 ± 1.79 vs. 2.21 ± 0.79 × 10(-3)mmHg(-1), p = 0.181) nor in PWV (8.69 ± 6.76 vs. 10.23 ± 7.88 ms(-1), p = 0.301) at 6 m.Treatment of symptomatic severe aortic stenosis by SAVR but not TAVI was associated with an increase in aortic stiffness at 6 months. Future work should focus on the prognostic implication of these findings to determine whether improved patient selection and outcomes can be achieved
Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review.
Cardiovascular Magnetic Resonance is increasingly used to differentiate the aetiology of cardiomyopathies. Late Gadolinium Enhancement (LGE) is the reference standard for non-invasive imaging of myocardial scar and focal fibrosis and is valuable in the differential diagnosis of ischaemic versus non-ischaemic cardiomyopathy. Diffuse fibrosis may go undetected on LGE imaging. Tissue characterisation with parametric mapping methods has the potential to detect and quantify both focal and diffuse alterations in myocardial structure not assessable by LGE. Native and post-contrast T1 mapping in particular has shown promise as a novel biomarker to support diagnostic, therapeutic and prognostic decision making in ischaemic and non-ischaemic cardiomyopathies as well as in patients with acute chest pain syndromes. Furthermore, changes in the myocardium over time may be assessed longitudinally with this non-invasive tissue characterisation method
Pulmonary arteriovenous malformations and embolic myocardial infarction identified with cardiovascular magnetic resonance
Effect of Lactobacillus casei on the production of pro-inflammatory markers in streptozotocin-induced diabetic rats.
It has been demonstrated that probiotic supplementation has positive effects in several murine models of disease through influences on host immune responses. This study examined the effect of Lactobacillus casei strain Shirota (L. casei Shirota) on the blood glucose, C-reactive protein (CRP), Interleukin-6 (IL-6), Interleukin-4 (IL-4), and body weight among STZ-induced diabetic rats. Diabetes mellitus was induced by streptozotocin (STZ, 50 mg/kg BW) in male Sprague–Dawley rats. Streptozotocin caused a significant increase in the blood glucose levels, CRP, and IL-6. L. casei Shirota supplementation lowered the CRP and IL-6 levels but had no significant effect on the blood glucose levels, body weight, or IL-4. Inflammation was determined histologically. The presence of the innate immune cells was not detectable in the liver of L. casei Shirota-treated hyperglycemic rats. The probiotic L. casei Shirota significantly lowered blood levels of pro-inflammatory cytokines (IL-6, CRP) and neutrophils in diabetic rats, showing a lower risk of diabetes mellitus and its complications
- …
