222 research outputs found
Adaptive latitudinal variation in Common Blackbird Turdus merula nest characteristics
Nest construction is taxonomically widespread, yet our understanding of adaptive
intraspecific variation in nest design remains poor. Nest characteristics are
expected to vary adaptively in response to predictable variation in spring temperatures
over large spatial scales, yet such variation in nest design remains largely
overlooked, particularly amongst open-cup-nesting birds. Here, we systematically
examined the effects of latitudinal variation in spring temperatures and precipitation
on the morphology, volume, composition, and insulatory properties of
open-cup-nesting Common Blackbirds’ Turdus merula nests to test the hypothesis
that birds living in cooler environments at more northerly latitudes would build
better insulated nests than conspecifics living in warmer environments at more
southerly latitudes. As spring temperatures increased with decreasing latitude, the
external diameter of nests decreased. However, as nest wall thickness also
decreased, there was no variation in the diameter of the internal nest cups. Only
the mass of dry grasses within nests decreased with warmer temperatures at lower
latitudes. The insulatory properties of nests declined with warmer temperatures at
lower latitudes and nests containing greater amounts of dry grasses had higher insulatory
properties. The insulatory properties of nests decreased with warmer temperatures
at lower latitudes, via changes in morphology (wall thickness) and
composition (dry grasses). Meanwhile, spring precipitation did not vary with latitude,
and none of the nest characteristics varied with spring precipitation. This suggests
that Common Blackbirds nesting at higher latitudes were building nests with
thicker walls in order to counteract the cooler temperatures. We have provided evidence
that the nest construction behavior of open-cup-nesting birds systematically
varies in response to large-scale spatial variation in spring temperatures
Morphology and biomechanics of the nests of the Common Blackbird Turdus merula
Capsule Common blackbirds select different materials, with varying biomechanical properties, to construct different parts of their nest.
Aims This study tested the hypothesis that outer components of a nest have a more structural role and so are stronger than materials used to line the cup.
Methods Blackbird nests were measured prior to being dismantled to isolate structural components which were tested for mechanical strength and rigidity.
Results Outer nest wall materials were significantly thicker, stronger and more rigid than materials in the inner structural wall or the cup lining. In the vertical plane materials used in the structural wall did not differ. By contrast, lining materials from the bottom of the nest cup were significantly thicker, stronger and more rigid than materials from the top of the cup.
Conclusion Blackbirds use different materials in nest construction roles suited to their properties and so may be able to recognise the structural properties of these materials. Materials on the outside of the nest may have a key structural role during construction
Re-emergence of tularemia in Germany: Presence of <it>Francisella tularensis </it>in different rodent species in endemic areas
<p>Abstract</p> <p>Background</p> <p>Tularemia re-emerged in Germany starting in 2004 (with 39 human cases from 2004 to 2007) after over 40 years of only sporadic human infections. The reasons for this rise in case numbers are unknown as is the possible reservoir of the etiologic agent <it>Francisella (F.) tularensis</it>. No systematic study on the reservoir situation of <it>F. tularensis </it>has been published for Germany so far.</p> <p>Methods</p> <p>We investigated three areas six to ten months after the initial tularemia outbreaks for the presence of <it>F. tularensis </it>among small mammals, ticks/fleas and water. The investigations consisted of animal live-trapping, serologic testing, screening by real-time-PCR and cultivation.</p> <p>Results</p> <p>A total of 386 small mammals were trapped. <it>F. tularensis </it>was detected in five different rodent species with carrier rates of 2.04, 6.94 and 10.87% per trapping area. None of the ticks or fleas (n = 432) tested positive for <it>F. tularensis</it>. We were able to demonstrate <it>F. tularensis-</it>specific DNA in one of 28 water samples taken in one of the outbreak areas.</p> <p>Conclusion</p> <p>The findings of our study stress the need for long-term surveillance of natural foci in order to get a better understanding of the reasons for the temporal and spatial patterns of tularemia in Germany.</p
Strukture and Mossbauer spectroscopy studies of multiferroic mechanically activated aurivillius compounds
X-ray di raction and 57Fe Mössbauer spectroscopy were applied as complementary methods to investigate the
structure and hyper ne interactions of the Aurivillius compounds prepared by mechanical activation and subsequent
heat treatment. Preliminary milling of precursors enhanced the di usion process and pure Aurivillius compounds
were obtained at lower temperature as compared with conventional solid-state sintering technology (lower at least
by 50 K). All the investigated Aurivillius compounds are paramagnetic materials at room temperature
Structure and magnetic properties of Bi5Ti3FeO15 ceramics prepared by sintering, mechanical activation and EDAMM process. A comparative study
Three different methods were used to obtain Bi5Ti3FeO15 ceramics, i.e. solid-state sintering, mechanical activation (MA) with subsequent thermal treatment, and electrical discharge assisted mechanical milling (EDAMM). The structure and magnetic properties of produced Bi5Ti3FeO15 samples were characterized using X-ray diffraction and Mössbauer spectroscopy. The purest Bi5Ti3FeO15 ceramics was obtained by standard solid-state sintering method. Mechanical milling methods are attractive because the Bi5Ti3FeO15 compound may be formed at lower temperature or without subsequent thermal treatment. In the case of EDAMM process also the time of processing is significantly shorter in comparison with solid-state sintering method. As revealed by Mössbauer spectroscopy, at room temperature the Bi5Ti3FeO15 ceramics produced by various methods is in paramagnetic state
Multi-modelling predictions show high uncertainty of required carbon input changes to reach a 4‰ target
Soils store vast amounts of carbon (C) on land, and increasing soil organic carbon (SOC) stocks in already managed soils such as croplands may be one way to remove C from the atmosphere, thereby limiting subsequent warming. The main objective of this study was to estimate the amount of additional C input needed to annually increase SOC stocks by 4%(0) at 16 long-term agricultural experiments in Europe, including exogenous organic matter (EOM) additions. We used an ensemble of six SOC models and ran them under two configurations: (1) with default parametrization and (2) with parameters calibrated site-by-site to fit the evolution of SOC stocks in the control treatments (without EOM). We compared model simulations and analysed the factors generating variability across models. The calibrated ensemble was able to reproduce the SOC stock evolution in the unfertilised control treatments. We found that, on average, the experimental sites needed an additional 1.5 +/- 1.2 Mg C ha(-)(1) year(-1) to increase SOC stocks by 4%(0) per year over 30 years, compared to the C input in the control treatments (multi-model median +/- median standard deviation across sites). That is, a 119% increase compared to the control. While mean annual temperature, initial SOC stocks and initial C input had a significant effect on the variability of the predicted C input in the default configuration (i.e., the relative standard deviation of the predicted C input from the mean), only water-related variables (i.e., mean annual precipitation and potential evapotranspiration) explained the divergence between models when calibrated. Our work highlights the challenge of increasing SOC stocks in agriculture and accentuates the need to increasingly lean on multi-model ensembles when predicting SOC stock trends and related processes. To increase the reliability of SOC models under future climate change, we suggest model developers to better constrain the effect of water-related variables on SOC decomposition
Toxicity bioassay of waste cooking oil-based biodiesel on marine microalgae
The world biodiesel production is increasing at a rapid rate. Despite its perceived safety for the environment, more detailed toxicity studies are mandatory, especially in the field of aquatic toxicology. While considerable attention has been paid to biodiesel combustion emissions, the toxicity of biodiesel in the aquatic environment has been poorly understood. In our study, we used an algae culture growth-inhibition test (OECD 201) for the comparison of the toxicity of B100 (pure biodiesel), produced by methanol transesterification of waste cooking oil (yellow grease), B0 (petroleum diesel fuel) and B20 (diesel-biodiesel blended of 20% biodiesel and 80% petroleum diesel fuel by volume). Two marine diatoms Attheya ussuriensis and Chaetoceros muelleri, the red algae Porphyridium purpureum and Raphidophyte Heterosigma akashiwo were employed as the aquatic test organisms. A sample of biodiesel from waste cooking oil without dilution with petroleum diesel (B100) showed the highest level of toxicity for the microalgae A. ussuriensis, C. muelleri and H. akashiwo, compared to hexane, methanol, petroleum diesel (B0) and diluted sample (B20). The acute EC50 in the growth-inhibition test (96 h exposure) of B100 for the four species was in the range of 3.75–23.95 g/L whereas the chronic toxicity EC50 (7d exposure) was in the range of 0.42–16.09 g/L
Investigating an Airborne Tularemia Outbreak, Germany
Infectious aerosols can contribute to the transmission of tularemia during processing of dead hares
The predictive validity of a Brain Care Score for late-life depression and a composite outcome of dementia, stroke, and late-life depression: data from the UK Biobank cohort
Introduction: The 21-point Brain Care Score (BCS) is a novel tool designed to motivate individuals and care providers to take action to reduce the risk of stroke and dementia by encouraging lifestyle changes. Given that late-life depression is increasingly recognized to share risk factors with stroke and dementia, and is an important clinical endpoint for brain health, we tested the hypothesis that a higher BCS is associated with a reduced incidence of future depression. Additionally, we examined its association with a brain health composite outcome comprising stroke, dementia, and late-life depression.
Methods: The BCS was derived from the United Kingdom Biobank baseline evaluation in participants with complete data on BCS items. Associations of BCS with the risk of subsequent incident late-life depression and the composite brain health outcome were estimated using multivariable Cox proportional hazard models. These models were adjusted for age at baseline and sex assigned at birth.
Results: A total of 363,323 participants were included in this analysis, with a median BCS at baseline of 12 (IQR: 11-14). There were 6,628 incident cases of late-life depression during a median follow-up period of 13 years. Each five-point increase in baseline BCS was associated with a 33% lower risk of incident late-life depression (95% CI: 29%-36%) and a 27% lower risk of the incident composite outcome (95% CI: 24%-30%).
Discussion: These data further demonstrate the shared risk factors across depression, dementia, and stroke. The findings suggest that a higher BCS, indicative of healthier lifestyle choices, is significantly associated with a lower incidence of late-life depression and a composite brain health outcome. Additional validation of the BCS is warranted to assess the weighting of its components, its motivational aspects, and its acceptability and adaptability in routine clinical care worldwide
The predictive validity of a Brain Care Score for dementia and stroke: data from the UK Biobank cohort
Introduction: The 21-point Brain Care Score (BCS) was developed through a modified Delphi process in partnership with practitioners and patients to promote behavior changes and lifestyle choices in order to sustainably reduce the risk of dementia and stroke. We aimed to assess the associations of the BCS with risk of incident dementia and stroke.
Methods: The BCS was derived from the United Kingdom Biobank (UKB) baseline evaluation for participants aged 40–69 years, recruited between 2006–2010. Associations of BCS and risk of subsequent incident dementia and stroke were estimated using Cox proportional hazard regressions, adjusted for sex assigned at birth and stratified by age groups at baseline.
Results: The BCS (median: 12; IQR:11–14) was derived for 398,990 UKB participants (mean age: 57; females: 54%). There were 5,354 incident cases of dementia and 7,259 incident cases of stroke recorded during a median follow-up of 12.5 years. A five-point higher BCS at baseline was associated with a 59% (95%CI: 40-72%) lower risk of dementia among participants aged 59 years. A five-point higher BCS was associated with a 48% (95%CI: 39-56%) lower risk of stroke among participants aged 59.
Discussion: The BCS has clinically relevant and statistically significant associations with risk of dementia and stroke in approximately 0.4 million UK people. Future research includes investigating the feasibility, adaptability and implementation of the BCS for patients and providers worldwide
- …
