73 research outputs found

    Aportes de la electroquímica a la arqueología subacuatica

    Get PDF
    La Electroquímica es una ciencia interdisciplinaria aplicable en múltiples áreas. Básicamente puede decirse que, en relación con la Termodinámica, permite predecir sobre la posibilidad cierta de que ocurra una determinada reacción electroquímica, según el material y el medio, en base al ordenamiento establecido en la Tabla de Potenciales. Por otra parte, a través de estudios cinéticos puede estimarse la durabilidad del material bajo determinadas condiciones. En relación con la arqueología subacuática, se conocen numerosos trabajos relacionados con la protección para la correcta preservación de artefactos metálicos extraídos de naufragios ó sitios arqueológicos sumergidos

    Comparative analysis of whole flower transcriptomes in the Zingiberales

    Get PDF
    The advancement of next generation sequencing technologies (NGS) has revolutionized our ability to generate large quantities of data at a genomic scale. Despite great challenges, these new sequencing technologies have empowered scientists to explore various relevant biological questions on non-model organisms, even in the absence of a complete sequenced reference genome. Here, we analyzed whole flower transcriptome libraries from exemplar species across the monocot order Zingiberales, using a comparative approach in order to gain insight into the evolution of the molecular mechanisms underlying flower development in the group. We identified 4,153 coding genes shared by all floral transcriptomes analyzed, and 1,748 genes that are only retrieved in the Zingiberales. We also identified 666 genes that are unique to the ginger lineage, and 2,001 that are only found in the banana group, while in the outgroup species Dichorisandra thyrsiflora J.C. Mikan (Commelinaceae) we retrieved 2,686 unique genes. It is possible that some of these genes underlie lineage-specific molecular mechanisms of floral diversification. We further discuss the nature of these lineage-specific datasets, emphasizing conserved and unique molecular processes with special emphasis in the Zingiberales. We also briefly discuss the strengths and shortcomings of de novo assembly for the study of developmental processes across divergent taxa from a particular order. Although this comparison is based exclusively on coding genes, with particular emphasis in transcription factors, we believe that the careful study of other regulatory mechanisms, such as non-coding RNAs, might reveal new levels of complexity, which were not explored in this work

    FoodLab: estandarización de proceso y desarrollo de nuevos productos

    Get PDF
    En este PAP se realizó un trabajo de mejora de procesos y desarrollo de productos dentro de FOODLAB, una empresa dedicada a la elaboración de productos de gomitas. Después de una primera evaluación y juntas con la persona encargada de la empresa, se determinó que se realizarían procedimientos de estandarización de procesos y de desarrollo de nuevos productos. Para el desarrollo de nuevos productos, se trabajó con las Yummy Fruits, realizando diferentes experimentaciones en donde se variaban los agentes gelantes y edulcorantes, así como sus concentraciones, hasta que se obtuvo un producto con características de textura y sabor agradables. Posteriormente se realizaron investigaciones y cotizaciones para ingredientes funcionales y empaques que podrían ser utilizados para el producto final. En cuanto a la estandarización del proceso de producción de Yummy Shots se llevó a cabo la toma de datos de 9 corridas de producción, variando condiciones de temperaturas, presión y °Brix, de las cuales se analizaron los distintos datos obtenidos en cada una de ellas y se concentró la información en una tabla donde se aprecian de mejor manera las distintas variaciones. Además, se actualizó la ficha técnica del producto, obteniendo resultados más completos de análisis fisicoquímicos, microbiológicos y bromatológicos de los Yummy Shots, de los cuales existen 2 tipos: sin chile y con chile.ITESO, A.C

    Epigenetic inactivation of the splicing RNA-binding protein CELF2 in human breast cancer

    Get PDF
    Altres ajuts: This work was co-finaced by the European Development Regional Fund, "A way to achieve Europe" ERDF; the Cellex Foundation; and "la Caixa" Banking Foundation (LCF/PR/PR15/ 11100003).Human tumors show altered patterns of protein isoforms that can be related to the dysregulation of messenger RNA alternative splicing also observed in transformed cells. Although somatic mutations in core spliceosome components and their associated factors have been described in some cases, almost nothing is known about the contribution of distorted epigenetic patterns to aberrant splicing. Herein, we show that the splicing RNA-binding protein CELF2 is targeted by promoter hypermethylation-associated transcriptional silencing in human cancer. Focusing on the context of breast cancer, we also demonstrate that CELF2 restoration has growth-inhibitory effects and that its epigenetic loss induces an aberrant downstream pattern of alternative splicing, affecting key genes in breast cancer biology such as the autophagy factor ULK1 and the apoptotic protein CARD10. Furthermore, the presence of CELF2 hypermethylation in the clinical setting is associated with shorter overall survival of the breast cancer patients carrying this epigenetic lesion

    Cirrhosis in a captive sun bear (Helarctos malayanus): a case report

    Get PDF
    El oso malayo (Helarctos malayanus o Ursus malayanus) es el más pequeño de los osos existentes en la actualidad. Su hábitat natural son las selvas tropicales del sudeste de Asia. Son omnívoros, se alimentan de brotes de plantas, raíces, frutas, bayas y semillas, como así también de pequeños mamíferos, aves, insectos e incluso miel de abejas. No presentan período de hibernación, pero en condiciones naturales durante la época de invierno, debido a la carencia de alimentos, se mantienen a partir de las reservas corporales grasas acumuladas en otoño (perÍodo de hiperalimentación).Facultad de Ciencias Veterinaria

    Look-alike humans identified by facial recognition algorithms show genetic similarities

    Get PDF
    We thank François Brunelle for providing the look-alike images. We thank CERCA Programme/Generalitat de Catalunya and the Josep Carreras Foundation for institutional support. This work was funded by the governments of Catalonia (2017SGR1080) and Spain (RTI2018-094049-B-I00, SAF2014-55000, and TIN2017-90124-P) and the Cellex Foundation. M.E. conceived and designed the study; R.S.J. M.R. C.A.G.-P. M.C.d.M. D.P. S.M. V.D. P.C. M.F.-B. I.O. C.L.-F. A.N. C.F.-T. D.A. F.M.S. X.B. A.V. and M.E. analyzed multiomics and questionnaire data; R.J. and M.E. wrote the manuscript with contributions and approval from all authors. M.E. is a consultant of Ferrer International and Quimatryx. S.M. is an employee of Ferrer International. C.F.-T. is chief technical officer of Herta Security.We thank François Brunelle for providing the look-alike images. We thank CERCA Programme/Generalitat de Catalunya and the Josep Carreras Foundation for institutional support. This work was funded by the governments of Catalonia (2017SGR1080) and Spain (RTI2018-094049-B-I00, SAF2014-55000, and TIN2017-90124-P) and the Cellex Foundation.The human face is one of the most visible features of our unique identity as individuals. Interestingly, monozygotic twins share almost identical facial traits and the same DNA sequence but could exhibit differences in other biometrical parameters. The expansion of the world wide web and the possibility to exchange pictures of humans across the planet has increased the number of people identified online as virtual twins or doubles that are not family related. Herein, we have characterized in detail a set of "look-alike" humans, defined by facial recognition algorithms, for their multiomics landscape. We report that these individuals share similar genotypes and differ in their DNA methylation and microbiome landscape. These results not only provide insights about the genetics that determine our face but also might have implications for the establishment of other human anthropometric properties and even personality characteristics

    Gene Flow in Genetically Modified Wheat

    Get PDF
    Understanding gene flow in genetically modified (GM) crops is critical to answering questions regarding risk-assessment and the coexistence of GM and non-GM crops. In two field experiments, we tested whether rates of cross-pollination differed between GM and non-GM lines of the predominantly self-pollinating wheat Triticum aestivum. In the first experiment, outcrossing was studied within the field by planting “phytometers” of one line into stands of another line. In the second experiment, outcrossing was studied over distances of 0.5–2.5 m from a central patch of pollen donors to adjacent patches of pollen recipients. Cross-pollination and outcrossing was detected when offspring of a pollen recipient without a particular transgene contained this transgene in heterozygous condition. The GM lines had been produced from the varieties Bobwhite or Frisal and contained Pm3b or chitinase/glucanase transgenes, respectively, in homozygous condition. These transgenes increase plant resistance against pathogenic fungi. Although the overall outcrossing rate in the first experiment was only 3.4%, Bobwhite GM lines containing the Pm3b transgene were six times more likely than non-GM control lines to produce outcrossed offspring. There was additional variation in outcrossing rate among the four GM-lines, presumably due to the different transgene insertion events. Among the pollen donors, the Frisal GM line expressing a chitinase transgene caused more outcrossing than the GM line expressing both a chitinase and a glucanase transgene. In the second experiment, outcrossing after cross-pollination declined from 0.7–0.03% over the test distances of 0.5–2.5 m. Our results suggest that pollen-mediated gene flow between GM and non-GM wheat might only be a concern if it occurs within fields, e.g. due to seed contamination. Methodologically our study demonstrates that outcrossing rates between transgenic and other lines within crops can be assessed using a phytometer approach and that gene-flow distances can be efficiently estimated with population-level PCR analyses

    Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program

    Get PDF
    Altres ajuts: This work was supported by the Obra Social "La Caixa" (to M. Esteller).Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease

    Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicenter, retrospective analysis

    Get PDF
    Background: Anti-programmed death-1 (PD-1) treatment for advanced non-small-cell lung cancer (NSCLC) has improved the survival of patients. However, a substantial percentage of patients do not respond to this treatment. We examined the use of DNA methylation profiles to determine the efficacy of anti-PD-1 treatment in patients recruited with current stage IV NSCLC. Methods: In this multicentre study, we recruited adult patients from 15 hospitals in France, Spain, and Italy who had histologically proven stage IV NSCLC and had been exposed to PD-1 blockade during the course of the disease. The study structure comprised a discovery cohort to assess the correlation between epigenetic features and clinical benefit with PD-1 blockade and two validation cohorts to assess the validity of our assumptions. We first established an epigenomic profile based on a microarray DNA methylation signature (EPIMMUNE) in a discovery set of tumour samples from patients treated with nivolumab or pembrolizumab. The EPIMMUNE signature was validated in an independent set of patients. A derived DNA methylation marker was validated by a single-methylation assay in a validation cohort of patients. The main study outcomes were progression-free survival and overall survival. We used the Kaplan-Meier method to estimate progression-free and overall survival, and calculated the differences between the groups with the log-rank test. We constructed a multivariate Cox model to identify the variables independently associated with progression-free and overall survival. Findings: Between June 23, 2014, and May 18, 2017, we obtained samples from 142 patients: 34 in the discovery cohort, 47 in the EPIMMUNE validation cohort, and 61 in the derived methylation marker cohort (the T-cell differentiation factor forkhead box P1 [FOXP1]). The EPIMMUNE signature in patients with stage IV NSCLC treated with anti-PD-1 agents was associated with improved progression-free survival (hazard ratio [HR] 0·010, 95% CI 3·29 × 10 −4–0·0282; p=0·0067) and overall survival (0·080, 0·017–0·373; p=0·0012). The EPIMMUNE-positive signature was not associated with PD-L1 expression, the presence of CD8+ cells, or mutational load. EPIMMUNE-negative tumours were enriched in tumour-associated macrophages and neutrophils, cancer-associated fibroblasts, and senescent endothelial cells. The EPIMMUNE-positive signature was associated with improved progression-free survival in the EPIMMUNE validation cohort (0·330, 0·149–0·727; p=0·0064). The unmethylated status of FOXP1 was associated with improved progression-free survival (0·415, 0·209–0·802; p=0·0063) and overall survival (0·409, 0·220–0·780; p=0·0094) in the FOXP1 validation cohort. The EPIMMUNE signature and unmethylated FOXP1 were not associated with clinical benefit in lung tumours that did not receive immunotherapy. Interpretation: Our study shows that the epigenetic milieu of NSCLC tumours indicates which patients are most likely to benefit from nivolumab or pembrolizumab treatments. The methylation status of FOXP1 could be associated with validated predictive biomarkers such as PD-L1 staining and mutational load to better select patients who will experience clinical benefit with PD-1 blockade, and its predictive value should be evaluated in prospective studies
    corecore