1,482 research outputs found
Presenting in Virtual Worlds: Towards an Architecture for a 3D Presenter explaining 2D-Presented Information
Entertainment, education and training are changing because of multi-party interaction technology. In the past we have seen the introduction of embodied agents and robots that take the role of a museum guide, a news presenter, a teacher, a receptionist, or someone who is trying to sell you insurances, houses or tickets. In all these cases the embodied agent needs to explain and describe. In this paper we contribute the design of a 3D virtual presenter that uses different output channels to present and explain. Speech and animation (posture, pointing and involuntary movements) are among these channels. The behavior is scripted and synchronized with the display of a 2D presentation with associated text and regions that can be pointed at (sheets, drawings, and paintings). In this paper the emphasis is on the interaction between 3D presenter and the 2D presentation
Methods of fitting multivariant functional models in the area of large computer exploita- tion final report, 23 may 1963 - 23 jul. 1965
Methods of fitting multivariant functional models in area of large computer exploitatio
High Speed Visible Light Communication Using Blue GaN Laser Diodes
GaN-based laser diodes have been developed over the last 20 years making them desirable for many security and defence applications, in particular, free space laser communications. Unlike their LED counterparts, laser diodes are not limited by their carrier lifetime which makes them attractive for high speed communication, whether in free space, through fiber or underwater. Gigabit data transmission can be achieved in free space by modulating the visible light from the laser with a pseudo-random bit sequence (PRBS), with recent results approaching 5 Gbit/s error free data transmission. By exploiting the low-loss in the blue part of the spectrum through water, data transmission experiments have also been conducted to show rates of 2.5 Gbit/s underwater. Different water types have been tested to monitor the effect of scattering and to see how this affects the overall transmission rate and distance. This is of great interest for communication with unmanned underwater vehicles (UUV) as the current method using acoustics is much slower and vulnerable to interception. These types of laser diodes can typically reach 50-100 mW of power which increases the length at which the data can be transmitted. This distance could be further improved by making use of high power laser arrays. Highly uniform GaN substrates with low defectivity allow individually addressable laser bars to be fabricated. This could ultimately increase optical power levels to 4 W for a 20-emitter array. Overall, the development of GaN laser diodes will play an important part in free space optical communications and will be vital in the advancement of security and defence applications
Electronic dielectric constants of insulators by the polarization method
We discuss a non-perturbative, technically straightforward, easy-to-use, and
computationally affordable method, based on polarization theory, for the
calculation of the electronic dielectric constant of insulating solids at the
first principles level. We apply the method to GaAs, AlAs, InN, SiC, ZnO, GaN,
AlN, BeO, LiF, PbTiO, and CaTiO. The predicted \einf's agree well
with those given by Density Functional Perturbation Theory (the reference
theoretical treatment), and they are generally within less than 10 % of
experiment.Comment: RevTeX 4 pages, 2 ps figure
Potential Use of MALDI-ToF Mass Spectrometry for Rapid Detection of Antifungal Resistance in the Human Pathogen Candida glabrata.
The echinocandins are relatively new antifungal drugs that represent, together with the older azoles, the recommended and/or preferred agents to treat candidaemia and other forms of invasive candidiasis in human patients. If "time is of the essence" to reduce the mortality for these infections, the administration of appropriate antifungal therapy could be accelerated by the timely reporting of laboratory test results. In this study, we attempted to validate a MALDI-ToF mass spectrometry-based assay for the antifungal susceptibility testing (AFST) of the potentially multidrug-resistant pathogen Candida glabrata against anidulafungin and fluconazole. The practical applicability of the assay, reported here as MS-AFST, was assessed with a panel of clinical isolates that were selected to represent phenotypically and genotypically/molecularly susceptible or resistant strains. The data show the potential of our assay for rapid detection of antifungal resistance, although the MS-AFST assay performed at 3 h of the in vitro antifungal exposure failed to detect C. glabrata isolates with echinocandin resistance-associated FKS2 mutations. However, cell growth kinetics in the presence of anidulafungin revealed important cues about the in vitro fitness of C. glabrata isolates, which may lead to genotypic or phenotypic antifungal testing in clinical practice
Construction and Calibration of Optically Efficient LCD-based Multi-Layer Light Field Displays
Near-term commercial multi-view displays currently employ ray-based 3D or 4D light field techniques. Conventional approaches to ray-based display typically include lens arrays or heuristic barrier patterns combined with integral interlaced views on a display screen such as an LCD panel. Recent work has placed an emphasis on the co-design of optics and image formation algorithms to achieve increased frame rates, brighter images, and wider fields-of-view using optimization-in-the-loop and novel arrangements of commodity LCD panels. In this paper we examine the construction and calibration methods of computational, multi-layer LCD light field displays. We present several experimental configurations that are simple to build and can be tuned to sufficient precision to achieve a research quality light field display. We also present an analysis of moiré interference in these displays, and guidelines for diffuser placement and display alignment to reduce the effects of moiré. We describe a technique using the moiré magnifier to fine-tune the alignment of the LCD layers
Amplitude measurements of Faraday waves
A light reflection technique is used to measure quantitatively the surface
elevation of Faraday waves. The performed measurements cover a wide parameter
range of driving frequencies and sample viscosities. In the capillary wave
regime the bifurcation diagrams exhibit a frequency independent scaling
proportional to the wavelength. We also provide numerical simulations of the
full Navier-Stokes equations, which are in quantitative agreement up to
supercritical drive amplitudes of 20%. The validity of an existing perturbation
analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure
Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance.
The fungal pathogen Candida glabrata has emerged as a major health threat since it readily acquires resistance to multiple drug classes, including triazoles and/or echinocandins. Thus far, cellular mechanisms promoting the emergence of resistance to multiple drug classes have not been described in this organism. Here we demonstrate that a mutator phenotype caused by a mismatch repair defect is prevalent in C. glabrata clinical isolates. Strains carrying alterations in mismatch repair gene MSH2 exhibit a higher propensity to breakthrough antifungal treatment in vitro and in mouse models of colonization, and are recovered at a high rate (55% of all C. glabrata recovered) from patients. This genetic mechanism promotes the acquisition of resistance to multiple antifungals, at least partially explaining the elevated rates of triazole and multi-drug resistance associated with C. glabrata. We anticipate that identifying MSH2 defects in infecting strains may influence the management of patients on antifungal drug therapy
Microscopic modelling of doped manganites
Colossal magneto-resistance manganites are characterised by a complex
interplay of charge, spin, orbital and lattice degrees of freedom. Formulating
microscopic models for these compounds aims at meeting to conflicting
objectives: sufficient simplification without excessive restrictions on the
phase space. We give a detailed introduction to the electronic structure of
manganites and derive a microscopic model for their low energy physics.
Focussing on short range electron-lattice and spin-orbital correlations we
supplement the modelling with numerical simulations.Comment: 20 pages, 10 figs, accepted for publ. in New J. Phys., Focus issue on
Orbital Physic
- …
