15 research outputs found

    A Defined Terminal Region of the E. coli Chromosome Shows Late Segregation and High FtsK Activity

    Get PDF
    Background: The FtsK DNA-translocase controls the last steps of chromosome segregation in E. coli. It translocates sister chromosomes using the KOPS DNA motifs to orient its activity, and controls the resolution of dimeric forms of sister chromosomes by XerCD-mediated recombination at the dif site and their decatenation by TopoIV. Methodology: We have used XerCD/dif recombination as a genetic trap to probe the interaction of FtsK with loci located in different regions of the chromosome. This assay revealed that the activity of FtsK is restricted to a,400 kb terminal region of the chromosome around the natural position of the dif site. Preferential interaction with this region required the tethering of FtsK to the division septum via its N-terminal domain as well as its translocation activity. However, the KOPSrecognition activity of FtsK was not required. Displacement of replication termination outside the FtsK high activity region had no effect on FtsK activity and deletion of a part of this region was not compensated by its extension to neighbouring regions. By observing the fate of fluorescent-tagged loci of the ter region, we found that segregation of the FtsK high activity region is delayed compared to that of its adjacent regions. Significance: Our results show that a restricted terminal region of the chromosome is specifically dedicated to the last step

    FtsK-Dependent Dimer Resolution on Multiple Chromosomes in the Pathogen Vibrio cholerae

    Get PDF
    Unlike most bacteria, Vibrio cholerae harbors two distinct, nonhomologous circular chromosomes (chromosome I and II). Many features of chromosome II are plasmid-like, which raised questions concerning its chromosomal nature. Plasmid replication and segregation are generally not coordinated with the bacterial cell cycle, further calling into question the mechanisms ensuring the synchronous management of chromosome I and II. Maintenance of circular replicons requires the resolution of dimers created by homologous recombination events. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover at a specific site, dif, by two tyrosine recombinases, XerC and XerD. The process is coordinated with cell division through the activity of a DNA translocase, FtsK. Many E. coli plasmids also use XerCD for dimer resolution. However, the process is FtsK-independent. The two chromosomes of the V. cholerae N16961 strain carry divergent dimer resolution sites, dif1 and dif2. Here, we show that V. cholerae FtsK controls the addition of a crossover at dif1 and dif2 by a common pair of Xer recombinases. In addition, we show that specific DNA motifs dictate its orientation of translocation, the distribution of these motifs on chromosome I and chromosome II supporting the idea that FtsK translocation serves to bring together the resolution sites carried by a dimer at the time of cell division. Taken together, these results suggest that the same FtsK-dependent mechanism coordinates dimer resolution with cell division for each of the two V. cholerae chromosomes. Chromosome II dimer resolution thus stands as a bona fide chromosomal process

    Dairy calves' personality traits predict social proximity and response to an emotional challenge

    Get PDF
    Abstract The assessment of individual traits requires that tests are reliable (i.e. consistency over time) and externally valid, meaning that they predict future responses in similar contexts (i.e. convergent validity) but do not predict responses to unrelated situations (i.e. discriminant validity). The aim of this study was to determine if dairy calf personality traits (Fearfulness, Sociability and Pessimism), derived from behaviours expressed in standardized tests, predict individuals’ responses in related situations. The first experiment tested if the trait ‘Sociability’ was related to the expression of social behaviour in the home-pen, with calves assigned individual proximity scores (based on proximity to other calves) while they were in their home-pen at approximately 113 and 118 d of age. The second experiment aimed at exploring whether traits ‘Fearfulness’ and ‘Pessimism’ were related to the calves’ emotional response to transportation. All calves were subjected to two 10-min transportation challenges done on two consecutive days. Emotional response was assessed using the maximum eye temperature (measured using infrared thermography) and the number of vocalizations emitted. Social proximity scores (Experiment 1), vocalizations emitted and maximum eye temperature after loading (Experiment 2) were consistent over time. In addition, the results showed good convergent validity with calves scoring higher in Sociability also having higher proximity scores in the home-pen, and animals scoring higher in Fearfulness and Pessimism showing a more intense emotional response to transportation. The results also showed good discriminant validity, as neither Fearfulness nor Pessimism were associated with the expression of social behaviours (Experiment 1) and Sociability was not associated with the animal’s emotional response to transportation (Experiment 2). We conclude that the methodology used to measure personality traits shows good reliability and external validity
    corecore