979 research outputs found
Gravitational Force and the Cardiovascular System
Cardiovascular responses to changes in gravitational force are considered. Man is ideally suited to his 1-g environment. Although cardiovascular adjustments are required to accommodate to postural changes and exercise, these are fully accomplished for short periods (min). More challenging stresses are those of short-term microgravity (h) and long-term microgravity (days) and of gravitational forces greater than that of Earth. The latter can be simulated in the laboratory and quantitative studies can be conducted
Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior
Consumption of high-fat diet acutely alters the daily rhythm of eating behavior and circadian organization (the phase relationship between oscillators in central and peripheral tissues) in mice. Voluntary wheel-running activity counteracts the obesogenic effects of high-fat diet and also modulates circadian rhythms in mice. In this study, we sought to determine whether voluntary wheel-running activity could prevent the proximate effects of high-fat diet consumption on circadian organization and behavioral rhythms in mice. Mice were housed with locked or freely rotating running wheels and fed chow or high-fat diet for 1 week and rhythms of locomotor activity, eating behavior, and molecular timekeeping (PERIOD2::LUCIFERASE luminescence rhythms) in ex vivo tissues were measured. Wheel-running activity delayed the phase of the liver rhythm by 4 h in both chow- and high-fat diet-fed mice. The delayed liver phase was specific to wheel-running activity since an enriched environment without the running wheel did not alter the phase of the liver rhythm. In addition, wheel-running activity modulated the effect of high-fat diet consumption on the daily rhythm of eating behavior. While high-fat diet consumption caused eating events to be more evenly dispersed across the 24 h-day in both locked-wheel and wheel-running mice, the effect of high-fat diet was much less pronounced in wheel-running mice. Together these data demonstrate that wheel-running activity is a salient factor that modulates liver phase and eating behavior rhythms in both chow- and high-fat-diet fed mice. Wheel-running activity in mice is both a source of exercise and a self-motivating, rewarding behavior. Understanding the putative reward-related mechanisms whereby wheel-running activity alters circadian rhythms could have implications for human obesity since palatable food and exercise may modulate similar reward circuits
Recommended from our members
Thrifting iridium for hydrogen
Anchoring catalysts on an engineered oxide support enables stable water electrolysis
Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice
Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several
hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA
Recommended from our members
An improved methodology for the recovery of Zea mays and other large crop pollen, with implications for environmental archaeology in the Neotropics
We present a simple sieving methodology to aid the recovery of large cultigen pollen grains, such as maize (Zea mays L.), manioc (Manihot esculenta Crantz), and sweet potato (Ipomoea batatas L.), among others, for the detection of food production using fossil pollen analysis of lake sediments in the tropical Americas. The new methodology was tested on three large study lakes located next to known and/or excavated pre-Columbian archaeological sites in South and Central America. Five paired samples, one treated by sieving, the other prepared using standard methodology, were compared for each of the three sites. Using the new methodology, chemically digested sediment samples were passed through a 53 µm sieve, and the residue was retained, mounted in silicone oil, and counted for large cultigen pollen grains. The filtrate was mounted and analysed for pollen according to standard palynological procedures. Zea mays (L.) was recovered from the sediments of all three study lakes using the sieving technique, where no cultigen pollen had been previously recorded using the standard methodology. Confidence intervals demonstrate there is no significant difference in pollen assemblages between the sieved versus unsieved samples. Equal numbers of exotic Lycopodium spores added to both the filtrate and residue of the sieved samples allow for direct comparison of cultigen pollen abundance with the standard terrestrial pollen count. Our technique enables the isolation and rapid scanning for maize and other cultigen pollen in lake sediments, which, in conjunction with charcoal and pollen records, is key to determining land-use patterns and the environmental impact of pre-Columbian societies
The Abl interactor proteins localize to sites of actin polymerization at the tips of lamellipodia and filopodia
AbstractCell movement is mediated by the protrusion of cytoplasm in the form of sheet- and rod-like extensions, termed lamellipodia and filopodia. Protrusion is driven by actin polymerization, a process that is regulated by signaling complexes that are, as yet, poorly defined. Since actin assembly is controlled at the tips of lamellipodia and filopodia [1], these juxtamembrane sites are likely to harbor the protein complexes that control actin polymerization dynamics underlying cell motility. An understanding of the regulation of protrusion therefore requires the characterization of the molecular components recruited to these sites. The Abl interactor (Abi) proteins, targets of Abl tyrosine kinases [2–4], have been implicated in Rac-dependent cytoskeletal reorganization in response to growth factor stimulation [5]. Here, we describe the unique localization of Abi proteins in living, motile cells. We show that Abi-1 and Abi-2b fused to enhanced yellow fluorescent protein (EYFP) are recruited to the tips of lamellipodia and filopodia. We identify the targeting domain as the homologous N terminus of these two proteins. Our findings are the first to suggest a direct involvement of members of the Abi protein family in the control of actin polymerization in protrusion events, and establish the Abi proteins as potential regulators of motility
Consumer behaviour in tourism: Concepts, influences and opportunities
Although consumer behaviour (CB) is one of the most researched areas in the field of tourism, few extensive reviews of the body of knowledge in this area exist. This review article examines what we argue are the key concepts, external influences and opportune research contexts in contemporary tourism CB research. Using a narrative review, we examine the CB literature published in three major tourism journals from 2000 to 2012. Of 519 articles identified and reviewed, 191 are included in this article. We examine the development of and scope for future research on nine key concepts, including decision-making, values, motivations, self-concept and personality, expectations, attitudes, perceptions, satisfaction, trust and loyalty. We then examine three important external influences on tourism behaviour, technology, Generation Y and the rise in concern over ethical consumption. Finally, we identify and discuss five research contexts that represent major areas for future scholarship: group and joint decision-making, under-researched segments, cross-cultural issues in emerging markets, emotions and consumer misbehaviour. Our examination of key research gaps is concluded by arguing that the hedonic and affective aspects of CB research in tourism must be brought to bear on the wider CB and marketing literature
\u3cem\u3emPeriod2\u3csup\u3eBrdm1\u3c/sup\u3e\u3c/em\u3e and Other Single \u3cem\u3ePeriod\u3c/em\u3e Mutant Mice Have Normal Food Anticipatory Activity
Animals anticipate the timing of food availability via the food-entrainable oscillator (FEO). The anatomical location and timekeeping mechanism of the FEO are unknown. Several studies showed the circadian gene, Period 2, is critical for FEO timekeeping. However, other studies concluded that canonical circadian genes are not essential for FEO timekeeping. In this study, we re-examined the effects of the Per2Brdm1 mutation on food entrainment using methods that have revealed robust food anticipatory activity in other mutant lines. We examined food anticipatory activity, which is the output of the FEO, in single Period mutant mice. Single Per1, Per2, and Per3 mutant mice had robust food anticipatory activity during restricted feeding. In addition, we found that two different lines of Per2 mutant mice (ldc and Brdm1) anticipated restricted food availability. To determine if FEO timekeeping persisted in the absence of the food cue, we assessed activity during fasting. Food anticipatory (wheel-running) activity in all Period mutant mice was also robust during food deprivation. Together, our studies demonstrate that the Period genes are not necessary for the expression of food anticipatory activity
- …
