10 research outputs found

    Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) form symbioses with most crops, potentially improving their nutrient assimilation and growth. The effects of cultivar and atmospheric CO2 concentration ([CO2]) on wheat–AMF carbon‐for‐nutrient exchange remain critical knowledge gaps in the exploitation of AMF for future sustainable agricultural practices within the context of global climate change. We used stable and radioisotope tracers (15N, 33P, 14C) to quantify AMF‐mediated nutrient uptake and fungal acquisition of plant carbon in three wheat (Triticum aestivum L.) cultivars. We grew plants under current ambient (440 ppm) and projected future atmospheric CO2 concentrations (800 ppm). We found significant 15N transfer from fungus to plant in all cultivars, and cultivar‐specific differences in total N content. There was a trend for reduced N uptake under elevated atmospheric [CO2]. Similarly, 33P uptake via AMF was affected by cultivar and atmospheric [CO2]. Total P uptake varied significantly among wheat cultivars and was greater at the future than current atmospheric [CO2]. We found limited evidence of cultivar or atmospheric [CO2] effects on plant‐fixed carbon transfer to the mycorrhizal fungi. Our results suggest that AMF will continue to provide a route for nutrient uptake by wheat in the future, despite predicted rises in atmospheric [CO2]. Consideration should therefore be paid to cultivar‐specific AMF receptivity and function in the development of climate smart germplasm for the future

    Cultivar‐dependent increases in mycorrhizal nutrient acquisition by barley in response to elevated CO2

    Get PDF
    Societal Impact Statement Modern agriculture is under pressure to meet yield targets while reducing reliance on finite resources to improve sustainability. Climate change represents an additional challenge—elevated atmospheric CO2 concentrations may increase plant growth and boost yield, but the nutritional value of crops grown at elevated CO2 is often reduced. Arbuscular mycorrhizal fungi (AMF) can improve plant nutrition, although how this symbiosis will be affected by climate change is unclear. Here, we demonstrate mycorrhizal contribution to nitrogen and phosphorus nutrition in barley under current and future CO2 concentrations. In one cultivar, AMF substantially increased phosphorus uptake at elevated CO2 and prevented phosphorus dilution, suggesting the symbiosis may become more important for crop nutrient uptake in the future. Summary Globally important cereals such as barley (Hordeum vulgare L.) often engage in symbiosis with arbuscular mycorrhizal fungi (AMF). The impact of elevated atmospheric CO2 on nutrient exchange between these symbionts remains unknown. In controlled environment experiments, we used isotope tracers (15N, 33P, 14C) to quantify nutrient fluxes between two barley cultivars (Moonshine and Riviera) and their associated AMF at ambient (440 ppm) and elevated (800 ppm) CO2. Elevated CO2 reduced shoot N concentration in Moonshine, and shoot N and P concentration in Riviera. Elevated CO2 substantially increased mycorrhizal 33P acquisition in Moonshine. Mycorrhizal contribution to P uptake in Moonshine may have prevented dilution of tissue P concentration at elevated CO2. In Riviera, AMF did not improve 33P acquisition. Both cultivars received 15N from their AMF symbionts, and this acquisition was not influenced by CO2 concentration, although Moonshine received more 15N than Riviera. Our results suggest that AMF may provide substantial contributions to barley nutrition at current and projected future CO2 concentrations. This is especially noteworthy for barley, which is generally considered to have low mycorrhizal receptivity. AMF may help alleviate or avoid nutrient dilution normally observed at elevated CO2. Variation between cultivars indicates that mycorrhizal contribution to cereal nutrition could be improved through selective breeding practices

    Heritable symbionts in a world of varying temperature

    Get PDF
    Heritable microbes represent an important component of the biology, ecology and evolution of many plants, animals and fungi, acting as both parasites and partners. In this review, we examine how heritable symbiont–host interactions may alter host thermal tolerance, and how the dynamics of these interactions may more generally be altered by thermal environment. Obligate symbionts, those required by their host, are considered to represent a thermally sensitive weak point for their host, associated with accumulation of deleterious mutations. As such, these symbionts may represent an important determinant of host thermal envelope and spatial distribution. We then examine the varied relationship between thermal environment and the frequency of facultative symbionts that provide ecologically contingent benefits or act as parasites. We note that some facultative symbionts directly alter host thermotolerance. We outline how thermal environment will alter the benefits/costs of infection more widely, and additionally modulate vertical transmission efficiency. Multiple patterns are observed, with symbionts being cold sensitive in some species and heat sensitive in others, with varying and non-coincident thresholds at which phenotype and transmission are ablated. Nevertheless, it is clear that studies aiming to predict ecological and evolutionary dynamics of symbiont–host interactions need to examine the interaction across a range of thermal environments. Finally, we discuss the importance of thermal sensitivity in predicting the success/failure of symbionts to spread into novel species following natural/engineered introduction

    Data from: The role of host phenology in determining the incidence of an insect sexually transmitted infection

    No full text
    Changes in the timing of life history events within the year alter the degree to which the activity patterns of different species coincide, making the dynamics of interspecific interactions sensitive to the phenology of the interacting parties. For parasites, the availability of suitable hosts to infect represents a crucial determinant of dynamics, and changes in the host (and parasite) phenology may thus alter disease epidemiology and the conditions for disease maintenance. We tested the hypothesis that the incidence of a sexually transmitted mite infection, Coccipolipus hippodamiae, in Adalia bipunctata ladybird beetles in Sweden was determined by host phenology, namely presence/absence of sexual contact between cohorts of the host. We observed that the pattern of mite presence/absence across Swedish A. bipunctata populations was highly reproducible between years, implying a persistent biological/ecological basis underlying the incidence. Further, ladybirds from populations where the mite was absent were able to acquire mites during copulation, develop a mite infection, and transmit infection onward, indicating an ecological (rather than biological) driver of mite incidence. Observations of ladybird phenology in natural populations provided evidence of sexual contact between overwintered and new cohort adults in populations where the mite was present. In contrast, new cohort ladybirds in the two northern Swedish populations where the mite was not present had not had sexual contact with the overwintered generation, creating a ‘hard stop’ to mite transmission. We conclude that variation in host phenology may be an important driver of the incidence of sexually transmitted infections (STIs) by determining the presence/absence of sexual contact between generations. More generally, we hypothesize that sensitivity to variation in host phenology will be highest for parasites like STIs that infect one host species, one host life stage and are directly transmitted on contact between host individuals

    Raw_epidemic_data

    No full text
    Data supporting figure 4 in the journal. Prevalence of C. hippodamiae on A. bipunctata beetles in a series of epidemics, partitioned by A. bipunctata sex

    Parasites of Harmonia axyridis: current research and perspectives

    No full text
    corecore