670 research outputs found
Paramètres gouvernant la prolifération bactérienne dans les réseaux de distribution
L'étude a permis de suivre l'évolution des caractéristiques physico-chimiques et microbiologiques des eaux dans un réseau de distribution expérimental de taille industrielle, afin de comparer d'une part l'effet du chlore et de la monochloramine sur la biomasse présente dans le système à l'équilibre et d'autre part d'établir des relations quantitatives entre prolifération bactérienne, oxydant et matière organique biodégradable.Dès les premières heures de transit dans le réseau, une consommation des oxydants est constatée, avec toutefois une plus grande stabilité de la monochloramine (vitesse de consommation de 0,05 mgCl2 l-1h-1 et 0,02 mgCl2 l-1h-1 respectivement pour le chlore et la monochloramine).Même en présence d'un désinfectant résiduel, il est possible de noter une accumulation de bactéries-à ta surface des tuyaux de distribution (105 à 106 cellules. cm-2, dont environ 1 % est cultivable sur gélose) qui augmente avec la diminution de concentration du désinfectant résiduel. Les relations logarithmiques entre densité cellulaire (phase eau ou biofilm) et oxydant résiduel montrent d'une part que pour inactiver totalement les bactéries en suspension dans l'eau il convient de maintenir une chloration en continu avec un résiduel constant supérieur ou égal à 0,5 mgCl2 l-1 et, d'autre part que les chloramines sont au moins 2,5 fois moins efficaces que le chlore, même vis-à -vis des bactéries fixées.La présence de matière organique biodégradable dans les eaux explique la prolifération des bactéries dans le système de distribution. Ainsi une concentration additionnelle de 100 µg.l-1 de carbone organique dissous biodégradable (CODB) dans l'eau entrant dans le réseau de distribution occasionne en 24 heures et à 20°C une augmentation du nombre de bactéries fixées (+7,5.105 cellules.cm-2) ou en suspension (+ 4.104 cellules.ml-1) dans le réseau de distribution, à l'équilibre, déjà largement colonisé par des micro-organismes.Ainsi le contrôle de la fraction biodégradable de la matière organique apparaît toujours comme un objectif primordial.This study was carried out in order to evaluate the variations in the physicochemical characteristics of the water in an experimental distribution system.The primary objectives of the study were :- to compare the disinfectant efficiency of chlorine and monochloramine- to establish quantitative correlations among bacterial density, concentration of residual disinfectant, and concentration of biodegradable organic matter.The finished waters were obtained from a water treatment pilot plant characterized by : prechlorination (average treatment rate : 1.4 mgCl2 l-1 and residual alter sand filtration : 0.08 mgCl2 l-1), coagulation-flocculation-sedimentation (FeCl3 treatment rate : 30 to 60 mg l-1 adjusted to the raw water turbidity below 0.3 NTU), sand filtration (filtration rate : 6 h-1) and post-disinfection with chloramine (average treatment rate : 1.8 mgCl2 l-1) or chloramine (average treatment rate : 1.66 mgCl2 l-1). The concentrations of post-disinfectant used were chosen in order to maintain chlorine at 0.2 to 0.5 mgCl2 l-1 and monochloramine at 1 mgC2 l-1 after the first 24 hours residence time in the experimental distribution system.The experimental distribution system is composed of three parallel loops connected in series (31 m length, 100 mm diameter, cement lined cast iron, water velocity : 1m s-1). The configuration and operation of the system permitted a residence time of 24 hours in each loop (that is 72 hours for the whole system). Appropriate sample tap locations facilitated removal of bulk water samples. Special sampling parts also permitted sampling of cement coupons for determination of attached biofilm.The measured parameters were : residual oxidant (DPD method), DOC, BDOC (28 days of incubation at 28 °C with a bacterial inoculum), cell density in the bulk water phase (CFU ml-1) and in the biofilm (CFU cm-2) after 15 days of incubation at 20-22 °C. Total cells were enumerated using the epifluorescence direct count technique.For each experiment, all the sampling sequences were carried out on each of three days, after quasi steady-state was achieved in the system (4 to 6 weeks after starting each experiment). The data were analysed in order to characterize the treated and distributed waters; the results discussed here are based on the averages of the measured parameters tram the water samples and biofilm samples taken after the system achieved quasi steady-state.Characteristics of the treated watersThe treated waters were characterized by important variations at the DOC, BDOC and cell density. For example, the concentrations of DOC showed a seasonal variation ranging from 0.8 to 1.3 mg Cl-1 in winter to 1.6 to 2.6 mg Cl-1 in summer.The treated waters contained approximately the same concentrations of residual disinfectant, averaging 1.6 mgCl2 l-1 for chlorine and 1.5 mgCl2 l-1 for monochloramine.However, a significant difference cell density was found between the two post-disinfectants. Cell densities by the epifluorescence direct count technic were 1.6 x 103 ml-1 (0.3 % of CFU ml-1) with chlorine and 6.3 x 104 ml-1 (0.03 % of CFU ml-1) with monochloramine. The difference on cell density between the post-chlorination and the post-chloramination treatments has been observed systematically, and may be explained either as cellular lysis with chlorine or an interference when using epifluorescence counting for chlorinated waters.Characteristics of the distributed watersWhatever the season, depletion of oxidant (chlorine or monochloramine), and elimination of dissolved organic matter (DOC, BDOC) occured during the first hours of circulation of water in the distribution system. The net result was an increase in bacterial cell density.During the first hours of circulation of the waters in the distribution system, depletion of the disinfectant occured. Depletion was more rapid for chlorine (-0.05 mgCl2 l-1 h-1) titan for monochloramine (-0.02 mgCl2 l-1 h-1), winch is considered more stable titan chlorine.Even in the presence of a residual disinfectant in the distribution system, microorganisms are present in the water phase (104 to 106 cells ml-1 by epifluorescence direct count; 1 % CFU ml-1 after 15 days of incubation at 20-22 °C) and in the biofilm (105 to 106 cells cm-2 by epifluorescence direct count; 1 % CFU ml-1 after 15 days of incubation at 20-22 °C). The bacterial density increased white the disinfectant residual decreased. The apparent growth rate of the attached biomass (µfix) in loop 2 of the chlorinated distribution system (equivalent to 48 hours detention), was close to the µfix calculated for loop 2 of the chloraminated distribution system : the values were 0.0043 h-1 and 0.005 h-1 respectively.In addition, the change in the organic matter (expressed as DOC) occured in two steps :- a slight increase in DOC during the 24 first hours of residence time (loop 1), when increased residual disinfectant were present.- a bacterial consumption of DOC after 24 hours of residence time (loops 2 and 3), even in the presence of small concentrations of disinfectants.In loop 2 (48 hours residence time of the water in the system; chlorine : 0.01 mgCl2 l-1, chloramine : 0.3 mgCl2 l-1 h-1), the rates of DOC elimination averaged 13 mgCl2 l-1 h-1 and 0.42, mgCl2 l-1 h-1, respectively in the chlorinated and chloraminated distribution systems. This decrease in DOC concentrations was related to the increase in bacterial density.Relationships between cell density, oxidant and organic matterLinear relationships between the concentration of residual oxidant (chlorine or monochloramine) and the cell density in the water phase or in the biofilm show that :- whichever oxidant was used, the pipe loop sections without residual disinfectants were characterized by about 5 x 106 attached cells per cm2 (4 to 10% were able to grow on agar medium in 15 days at 20-22 °C) and by 4 x 105 planktonic cells per ml (1 % CFU ml-1);- consistently, in the sections of the system with a residual disinfectant, the bacteria (CFU and epilluorescence counting) in the water phase were more sensitive to the residual disinfectant (chlorine or monochloramine) than the bacteria attached to the pipe walls (biofilm).However, there was a difference in effectiveness between the two disinfectants; chlorine was more efficient in controlling planktonic bacteria and biofilm bacteria than was monochloramine.For example, to achieve complete inactivation of the planktonic bacteria (CFU ml-1) a constant chlorine residual of 0.5 mgCl2 l-1 was required throughout the whole distribution system, compared to 2.5 times more chloramine to achieve the same efficiency.Finally, with equivalent concentrations of residual disinfectant, the microbiological quality of the chlorinated distribution waters was better than that of the chloraminated distribution waters.From loop to loop, linear relationships between ∆DOC and cell density pointed out that the presence of biodegradable organic matter can explain the bacterial proliferation in the distribution system. For example, a concentration of BDOC as low as 0.1 mgC l-1 resulted in an increase in the cell density : an additional accumulation of 7.5 x 105 attached cells cm-2 and 4 x 104 planktonic cells ml-1 was observed in the experimental distribution system at quasi steady-state.Consequently, the control of the biodegradable organic carbon remains one of the prime objectives in order to achieve biologically stable distribution waters
Supporting Parental Decisions About Genomic Sequencing for Newborn Screening: The NC NEXUS Decision Aid
Advances in genomic sequencing technology have raised fundamental challenges to the traditional ways genomic information is communicated. These challenges will become increasingly complex and will affect a much larger population in the future if genomics is incorporated into standard newborn screening practice. Clinicians, public health officials, and other stakeholders will need to agree on the types of information that they should seek and communicate to parents. Currently, few evidence-based and validated tools are available to support parental informed decision-making. These tools will be necessary as genomics is integrated into clinical practice and public health systems. In this article we describe how the North Carolina Newborn Exome Sequencing for Universal Screening study is addressing the need to support parents in making informed decisions about the use of genomic testing in newborn screening. We outline the context for newborn screening and justify the need for parental decision support. We also describe the process of decision aid development and the data sources, processes, and best practices being used in development. By the end of the study, we will have an evidenced-based process and validated tools to support parental informed decision-making about the use of genomic sequencing in newborn screening. Data from the study will help answer important questions about which genomic information ought to be sought and communicated when testing newborns
Clinical impact of vitamin D treatment in cystic fibrosis: a pilot randomized, controlled trial
BACKGROUND/OBJECTIVES: Vitamin D insufficiency in cystic fibrosis is common. Vitamin D3 is currently preferred over D2. We aimed to study the efficacy of vitamin D2 and D3 at increasing serum 25-hydroxyvitamin D (s25OHD) concentrations and their effect on respiratory health in cystic fibrosis. SUBJECTS/METHODS: Sixteen CF patients were randomized to receive vitamin D2 or D3 or to serve as controls. The starting dose of 5000 IU (< 16 years old) or 7143 IU/day (>= 16 years old) was further individually adjusted. Three months of intervention were followed by two of washout (ClinicalTrials. gov NCT01321905). RESULTS: To increase s25OHD, the mean daily dose of vitamin D2 and D3 had to be increased up to 15650 and 8184 IU, respectively. The combined group of vitamin D2 and D3 treated patients decreased plasma IL-8 (P < 0.05). Patients provided vitamin D3 improved FVC at the end of the trial (P < 0.05). Change in s25OHD was positively correlated with changes in the adult Quality-of-Life respiratory score at the end of supplementation (P = 0.006, r = 0.90), and with changes in FEV1 (P = 0.042, r = 0.62) and FVC (P = 0.036, r = 0.63) at one month of washout. CONCLUSIONS: Vitamin D supplementation may contribute to reduced inflammation and improved lung function in CF
Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics
A continuous time model for multiagent systems governed by reinforcement
learning with scale-free memory is developed. The agents are assumed to act
independently of one another in optimizing their choice of possible actions via
trial-and-error search. To gain awareness about the action value the agents
accumulate in their memory the rewards obtained from taking a specific action
at each moment of time. The contribution of the rewards in the past to the
agent current perception of action value is described by an integral operator
with a power-law kernel. Finally a fractional differential equation governing
the system dynamics is obtained. The agents are considered to interact with one
another implicitly via the reward of one agent depending on the choice of the
other agents. The pairwise interaction model is adopted to describe this
effect. As a specific example of systems with non-transitive interactions, a
two agent and three agent systems of the rock-paper-scissors type are analyzed
in detail, including the stability analysis and numerical simulation.
Scale-free memory is demonstrated to cause complex dynamics of the systems at
hand. In particular, it is shown that there can be simultaneously two modes of
the system instability undergoing subcritical and supercritical bifurcation,
with the latter one exhibiting anomalous oscillations with the amplitude and
period growing with time. Besides, the instability onset via this supercritical
mode may be regarded as "altruism self-organization". For the three agent
system the instability dynamics is found to be rather irregular and can be
composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur
Hunger Artists: Yeast Adapted to Carbon Limitation Show Trade-Offs under Carbon Sufficiency
As organisms adaptively evolve to a new environment, selection results in the improvement of certain traits, bringing about an increase in fitness. Trade-offs may result from this process if function in other traits is reduced in alternative environments either by the adaptive mutations themselves or by the accumulation of neutral mutations elsewhere in the genome. Though the cost of adaptation has long been a fundamental premise in evolutionary biology, the existence of and molecular basis for trade-offs in alternative environments are not well-established. Here, we show that yeast evolved under aerobic glucose limitation show surprisingly few trade-offs when cultured in other carbon-limited environments, under either aerobic or anaerobic conditions. However, while adaptive clones consistently outperform their common ancestor under carbon limiting conditions, in some cases they perform less well than their ancestor in aerobic, carbon-rich environments, indicating that trade-offs can appear when resources are non-limiting. To more deeply understand how adaptation to one condition affects performance in others, we determined steady-state transcript abundance of adaptive clones grown under diverse conditions and performed whole-genome sequencing to identify mutations that distinguish them from one another and from their common ancestor. We identified mutations in genes involved in glucose sensing, signaling, and transport, which, when considered in the context of the expression data, help explain their adaptation to carbon poor environments. However, different sets of mutations in each independently evolved clone indicate that multiple mutational paths lead to the adaptive phenotype. We conclude that yeasts that evolve high fitness under one resource-limiting condition also become more fit under other resource-limiting conditions, but may pay a fitness cost when those same resources are abundant
A Cytoplasmic Complex Mediates Specific mRNA Recognition and Localization in Yeast
The localization of ash mRNA in yeast requires the binding of She2p and the myosin adaptor protein She3p to its localization element, which is highly specific and leads to the assembly of stable transport complexes
Innovation, technology and user experience in museums: insights from scientific literature
Museums play an important role in preserving the heritage and cultural legacy of humanity, however, one of their main weaknesses in regards the user is their static nature. At present, and in the face of the development of diverse technologies and the ease of access to information, museums have upgraded their implementation of technologies aimed at improving the user experience, trying more and more to access younger audiences with a sensitivity and natural capacity for the management of new technologies. This work identifies trends in the use of technological tools by museums worldwide and the effect of these on the user or visitor experience through a review of scientific literature. To complete the work, we performed a search of the publications in the Scopus® referencing database, and downloaded, processed, and visualized the data using the VOSviewer® tool. The main trends identified in this context of analysis are related to the role of museums with the development and improvement of the user experience; orientation to young audiences and innovation driven by the user through Interactive Systems, digital games, QR Codes, apps, augmented reality, virtual reality and gamification, among others. The objective of the implementation of new technologies in the context of museums is to satisfy the needs of contemporary communication, for all types of content and aimed at an increasingly digital audience, in order to ensure positive interaction and feedback from ideas with social and cultural changes
- …