679 research outputs found

    Proof of the thermodynamical stability of the E' center in SiO2

    Full text link
    The E' center is a paradigmatic radiation-induced defect in SiO2 whose peculiar EPR and hyperfine activity has been known since over 40 years. This center has been traditionally identified with a distorted, positively-charged oxygen vacancy V_O+. However, no direct proof of the stability of this defect has ever been provided, so that its identification is still strongly incomplete. Here we prove directly that distorted V_O+ is metastable and that it satisfies the key requirements for its identification as E', such as thermal and optical response, and activation-deactivation mechanisms.Comment: RevTeX 4 pages, 2 figure

    Origin of anomalously long interatomic distances in suspended gold chains

    Full text link
    The discovery of long bonds in gold atom chains has represented a challenge for physical interpretation. In fact, interatomic distances frequently attain 3.0-3.6 A values and, distances as large as 5.0 A may be seldom observed. Here, we studied gold chains by transmission electron microscopy and performed theoretical calculations using cluster ab initio density functional formalism. We show that the insertion of two carbon atoms is required to account for the longest bonds, while distances above 3 A may be due to a mixture of clean and one C atom contaminated bonds.Comment: 4 pages, 4 Postscript figures, to be published in Physical Review Letter

    A Model for Ferromagnetic Nanograins with Discrete Electronic States

    Full text link
    We propose a simple phenomenological model for an ultrasmall ferromagnetic grain, formulated in terms of the grain's discrete energy levels. We compare the model's predictions with recent measurements of the discrete tunneling spectrum through such a grain. The model can qualitatively account for the observed features if we assume (i) that the anisotropy energy varies among different eigenstates of one grain, and (ii) that nonequilibrium spin accumulation occurs.Comment: 4 pages, 2 figure

    Nonequilibrium excitations in Ferromagnetic Nanoparticles

    Full text link
    In recent measurements of tunneling transport through individual ferromagnetic Co nanograins, Deshmukh, Gu\'eron, Ralph et al. \cite{mandar,gueron} (DGR) observed a tunneling spectrum with discrete resonances, whose spacing was much smaller than what one would expect from naive independent-electron estimates. In a previous publication, \cite{prl_kleff} we had suggested that this was a consequence of nonequilibrium excitations, and had proposed a ``minimal model'' for ferromagnetism in nanograins with a discrete excitation spectrum as a framework for analyzing the experimental data. In the present paper, we provide a detailed analysis of the properties of this model: We delineate which many-body electron states must be considered when constructing the tunneling spectrum, discuss various nonequilibrium scenarios and compare their results with the experimental data of Refs. \cite{mandar,gueron}. We show that a combination of nonequilibrium spin- and single-particle excitations can account for most of the observed features, in particular the abundance of resonances, the resonance spacing and the absence of Zeeman splitting.Comment: 13 pages, 10 figure

    Adsorption of CO on a Platinum (111) surface - a study within a four-component relativistic density functional approach

    Get PDF
    We report on results of a theoretical study of the adsorption process of a single carbon oxide molecule on a Platinum (111) surface. A four-component relativistic density functional method was applied to account for a proper description of the strong relativistic effects. A limited number of atoms in the framework of a cluster approach is used to describe the surface. Different adsorption sites are investigated. We found that CO is preferably adsorbed at the top position.Comment: 23 Pages with 4 figure

    CO adsorption on neutral iridium clusters

    Get PDF
    The adsorption of carbon monoxide on neutral iridium clusters in the size range of n = 3 to 21 atoms is investigated with infrared multiple photon dissociation spectroscopy. For each cluster size only a single v(CO) band is present with frequencies in the range between 1962 cm-1 (n = 8) and 1985 cm-1 (n = 18) which can be attributed to an atop binding geometry. This behaviour is compared to the CO binding geometries on clusters of other group 9 and 10 transition metals as well as to that on extended surfaces. The preference of Ir for atop binding is rationalized by relativistic effects on the electronic structure of the later 5d metals

    Theoretical investigation of carbon defects and diffusion in α-quartz

    Get PDF
    The geometries, formation energies, and diffusion barriers of carbon point defects in silica (α-quartz) have been calculated using a charge-self-consistent density-functional based nonorthogonal tight-binding method. It is found that bonded interstitial carbon configurations have significantly lower formation energies (on the order of 5 eV) than substitutionals. The activation energy of atomic C diffusion via trapping and detrapping in interstitial positions is about 2.7 eV. Extraction of a CO molecule requires an activation energy <3.1 eV but the CO molecule can diffuse with an activation energy <0.4 eV. Retrapping in oxygen vacancies is hindered—unlike for O2—by a barrier of about 2 eV

    Ab initio calculations for bromine adlayers on the Ag(100) and Au(100) surfaces: the c(2x2) structure

    Full text link
    Ab initio total-energy density-functional methods with supercell models have been employed to calculate the c(2x2) structure of the Br-adsorbed Ag(100) and Au(100) surfaces. The atomic geometries of the surfaces and the preferred bonding sites of the bromine have been determined. The bonding character of bromine with the substrates has also been studied by analyzing the electronic density of states and the charge transfer. The calculations show that while the four-fold hollow-site configuration is more stable than the two-fold bridge-site topology on the Ag(100) surface, bromine prefers the bridge site on the Au(100) surface. The one-fold on-top configuration is the least stable configuration on both surfaces. It is also observed that the second layer of the Ag substrate undergoes a small buckling as a consequence of the adsorption of Br. Our results provide a theoretical explanation for the experimental observations that the adsorption of bromine on the Ag(100) and Au(100) surfaces results in different bonding configurations.Comment: 10 pages, 4 figure, 5 tables, Phys. Rev. B, in pres

    Photon-assisted tunneling in a Fe8 Single-Molecule Magnet

    Full text link
    The low temperature spin dynamics of a Fe8 Single-Molecule Magnet was studied under circularly polarized electromagnetic radiation allowing us to establish clearly photon-assisted tunneling. This effect, while linear at low power, becomes highly non-linear above a relatively low power threshold. This non-linearity is attributed to the nature of the coupling of the sample to the thermostat.These results are of great importance if such systems are to be used as quantum computers.Comment: 4 pages, 4 figure
    corecore