9,971 research outputs found

    Nonlinear lattice model of viscoelastic Mode III fracture

    Full text link
    We study the effect of general nonlinear force laws in viscoelastic lattice models of fracture, focusing on the existence and stability of steady-state Mode III cracks. We show that the hysteretic behavior at small driving is very sensitive to the smoothness of the force law. At large driving, we find a Hopf bifurcation to a straight crack whose velocity is periodic in time. The frequency of the unstable bifurcating mode depends on the smoothness of the potential, but is very close to an exact period-doubling instability. Slightly above the onset of the instability, the system settles into a exactly period-doubled state, presumably connected to the aforementioned bifurcation structure. We explicitly solve for this new state and map out its velocity-driving relation

    The Universal Gaussian in Soliton Tails

    Full text link
    We show that in a large class of equations, solitons formed from generic initial conditions do not have infinitely long exponential tails, but are truncated by a region of Gaussian decay. This phenomenon makes it possible to treat solitons as localized, individual objects. For the case of the KdV equation, we show how the Gaussian decay emerges in the inverse scattering formalism.Comment: 4 pages, 2 figures, revtex with eps

    Microscopic Selection of Fluid Fingering Pattern

    Full text link
    We study the issue of the selection of viscous fingering patterns in the limit of small surface tension. Through detailed simulations of anisotropic fingering, we demonstrate conclusively that no selection independent of the small-scale cutoff (macroscopic selection) occurs in this system. Rather, the small-scale cutoff completely controls the pattern, even on short time scales, in accord with the theory of microscopic solvability. We demonstrate that ordered patterns are dynamically selected only for not too small surface tensions. For extremely small surface tensions, the system exhibits chaotic behavior and no regular pattern is realized.Comment: 6 pages, 5 figure

    Two-finger selection theory in the Saffman-Taylor problem

    Get PDF
    We find that solvability theory selects a set of stationary solutions of the Saffman-Taylor problem with coexistence of two \it unequal \rm fingers advancing with the same velocity but with different relative widths λ1\lambda_1 and λ2\lambda_2 and different tip positions. For vanishingly small dimensionless surface tension d0d_0, an infinite discrete set of values of the total filling fraction λ=λ1+λ2\lambda = \lambda_1 + \lambda_2 and of the relative individual finger width p=λ1/λ2p=\lambda_1/\lambda_2 are selected out of a two-parameter continuous degeneracy. They scale as λ−1/2∼d02/3\lambda-1/2 \sim d_0^{2/3} and ∣p−1/2∣∼d01/3|p-1/2| \sim d_0^{1/3}. The selected values of λ\lambda differ from those of the single finger case. Explicit approximate expressions for both spectra are given.Comment: 4 pages, 3 figure

    Velocity selection problem for combined motion of melting and solidification fronts

    Get PDF
    We discuss a free boundary problem for two moving solid-liquid interfaces that strongly interact via the diffusion field in the liquid layer between them. This problem arises in the context of liquid film migration (LFM) during the partial melting of solid alloys. In the LFM mechanism the system chooses a more efficient kinetic path which is controlled by diffusion in the liquid film, whereas the process with only one melting front would be controlled by the very slow diffusion in the mother solid phase. The relatively weak coherency strain energy is the effective driving force for LFM. As in the classical dendritic growth problems, also in this case an exact family of steady-state solutions with two parabolic fronts and an arbitrary velocity exists if capillary effects are neglected. We develop a velocity selection theory for this problem, including anisotropic surface tension effects. The strong diffusion interaction and coherency strain effects in the solid near the melting front lead to substantial changes compared to classical dendritic growth.Comment: submitted to PR

    Quantum network of neutral atom clocks

    Get PDF
    We propose a protocol for creating a fully entangled GHZ-type state of neutral atoms in spatially separated optical atomic clocks. In our scheme, local operations make use of the strong dipole-dipole interaction between Rydberg excitations, which give rise to fast and reliable quantum operations involving all atoms in the ensemble. The necessary entanglement between distant ensembles is mediated by single-photon quantum channels and collectively enhanced light-matter couplings. These techniques can be used to create the recently proposed quantum clock network based on neutral atom optical clocks. We specifically analyze a possible realization of this scheme using neutral Yb ensembles.Comment: 13 pages, 11 figure

    Precision Measurement of the 29Si, 33S, and 36Cl Binding Energies

    Full text link
    The binding energies of 29Si, 33S, and 36Cl have been measured with a relative uncertainty <0.59×10−6< 0.59 \times 10^{-6} using a flat-crystal spectrometer. The unique features of these measurements are 1) nearly perfect crystals whose lattice spacing is known in meters, 2) a highly precise angle scale that is derived from first principles, and 3) a gamma-ray measurement facility that is coupled to a high flux reactor with near-core source capability. The binding energy is obtained by measuring all gamma-rays in a cascade scheme connecting the capture and ground states. The measurements require the extension of precision flat-crystal diffraction techniques to the 5 to 6 MeV energy region, a significant precision measurement challenge. The binding energies determined from these gamma-ray measurements are consistent with recent highly accurate atomic mass measurements within a relative uncertainty of 4.3×10−74.3 \times 10^{-7}. The gamma-ray measurement uncertainties are the dominant contributors to the uncertainty of this consistency test. The measured gamma-ray energies are in agreement with earlier precision gamma-ray measurements.Comment: 13 pages, 4 figure

    Phase-Field Model of Mode III Dynamic Fracture

    Full text link
    We introduce a phenomenological continuum model for mode III dynamic fracture that is based on the phase-field methodology used extensively to model interfacial pattern formation. We couple a scalar field, which distinguishes between ``broken'' and ``unbroken'' states of the system, to the displacement field in a way that consistently includes both macroscopic elasticity and a simple rotationally invariant short scale description of breaking. We report two-dimensional simulations that yield steady-state crack motion in a strip geometry above the Griffith threshold.Comment: submitted to PR
    • …
    corecore