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We propose a protocol for creating a fully entangled Greenberger-Horne-Zeilinger-type state of neutral
atoms in spatially separated optical atomic clocks. In our scheme, local operations make use of the strong
dipole-dipole interaction between Rydberg excitations, which give rise to fast and reliable quantum
operations involving all atoms in the ensemble. The necessary entanglement between distant ensembles is
mediated by single-photon quantum channels and collectively enhanced light-matter couplings. These
techniques can be used to create the recently proposed quantum clock network based on neutral atom
optical clocks. We specifically analyze a possible realization of this scheme using neutral Yb ensembles.
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The current record in clock accuracy is held by ytterbium
and strontium clocks [1], capable of reaching ∼10−18
fractional frequency stability [2,3]. Apart from the enor-
mous amount of effort and innovation, the unprecedented
precision and accuracy were attainable due to the large
number of clock atoms (103–104) [4]. Superstable clocks
enable evaluation of the systematic frequency shift of atomic
transitions with less averaging time, which is important to
measure fast transients, e.g., gravitationalwaves and passing
dark-matter clumps [5]. In our recent work [6], we showed
that a quantum network of atomic clocks can result in a
substantial boost of the overall precision if multiple clocks
are phase locked and connected by quantum entanglement.
The proposed globally entangled state, the Greenberger-
Horne-Zeilinger (GHZ) state, is more sensitive to the global
phase evolution of the clock atoms, and thus allows for an
improved measurement of the passage of time. If the GHZ
state is set up and interrogated in the optimal way [7,8],
frequency measurements can asymptotically reach the
Heisenberg limit [9], associated with the total number of
atoms in the entire network. Significant noise reduction has
recently been demonstrated with spin-squeezed states in a
single ensemble of atoms in Ref. [10], which reported a 70-
fold enhancement of phase measurement accuracy beyond
the standard quantum limit, relying on amuch larger number
of atoms. Efforts are being made to make both the nonlocal
[11] and local entanglement distribution [12,13] faster and
more reliable. Of particular interest are applications of these
ideas to neutral atom clocks.
In this Letter, we show how a nonlocal GHZ state can be

created across multiple, spatially separated neutral atom
clocks with high fidelity. Our protocol relies on strong
Rydberg blockade for enhancing local atom-atom inter-
action, collective excitations for enhancing photon-atom

interaction, and single photon quantum channels for
reliable remote connections. We propose and analyze a
realization using neutral Yb ensembles, suitable for the
current atomic clock technology. We predict that thousands
of atoms can be entangled to give an overall stability
increase of more than an order of magnitude, compared to
nonentangled clock networks. We emphasize that our
protocol, although presented to be used for a network,
can also be applied to a single ensemble.
We describe our protocol for K identical atomic clocks

arranged in a sequence, each connected to its neighbors
with optical channels, and each using Mn identical atoms,
trapped in a magic-wavelength optical lattice, distributed in
M ensembles, illustrated on Fig. 1. We use the atomic
levels, shown on Fig. 2(a) for our protocol: The two levels
of the clock transition, g, f, a metastable shelving level s,
an excited level e, which spontaneously decays to g, and
two strongly interacting Rydberg levels, r1 and r2. We
further require transitions between levels, marked with
arrows, to be driven independently.

FIG. 1. Schematic of the setup. K clocks, each holding M
atomic ensembles of size n are connected. Atoms within each
ensemble get entangled using long-range interaction between
Rydberg atoms; ensembles in the same clock are entangled either
via Rydberg interactions or via the cavity mode, while neighbor-
ing clocks are entangled through single-photon quantum chan-
nels, enhanced by optical cavities. The resulting state is a global
GHZ state, j0i⊗N þ j1i⊗N of allN ¼ KMn atoms in the network.
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We imagine preparing all atoms in the ground state g,
after which our protocol consists of five subsequent steps.
First, using blockade, we create two independent collec-
tive excitations in one ensemble in each clock, using two
separate atomic levels (f and s). Second, each excited
ensemble emits single photon pulses that are entangled
with one of these collective excitations. Third, the
photons are sent towards the neighboring atomic clocks,
and measured with a linear optics setup in the Bell basis.
Fourth, upon success, each clock performs a local
controlled-NOT (CNOT) operation to connect the two
collective excitations. The result is a set of K entangled
collective excitations, one in the first ensemble of each
clock, which serve as “seeds” for a global GHZ state. In
the fifth, and final, step the clocks locally “grow” a GHZ
state out of each seed, extending it to all atoms in the
clock, and thus a global GHZ state is obtained. In the
following, we provide a detailed description and analysis
of these five steps, discuss the specific realization in Yb
atoms, and analyze the most important sources of
imperfections and errors.

Our schememakes use of the Rydberg blockade, which is
a result of the interaction arising between atoms excited to
Rydberg states in an ensemble [14–16], allowing precise
quantum control. The Rydberg blockade has been proposed
as an efficient tool to realize quantum gates and perform
quantum information processing [13,17–21]. Efficient con-
trol requires the atoms to residewithin the blockade radius of
the Rydberg atom. Different ways of trapping and manipu-
lating Rydberg states are currently under investigation both
experimentally [22–26] and theoretically [27–29].
In the first step, we make use of the Rydberg blockade to

create a superposition of one and zero excitation in both the
f and s levels, following the approach of Refs. [13,14,17].
This is done by performing the following sequence of
driving pulses: ½π=ð2 ffiffiffi

n
p Þ�g;r1, ½π�f;r1, ½π�f;s, ½ðπ=ð2

ffiffiffi
n

p Þ�g;r1,
½π�f;r1, shown in Fig. 2(a), where ½ϕ�a;b stands for a pulse
with total, single-atom Rabi phase ϕ between level a and b.
Starting from the state jgi⊗n ≕ j0f0si, this pulse sequence
creates the state

ð1þ f†þÞð1þ s†þÞj0f0si ≕ ðj0fi þ j1fiÞðj0si þ j1siÞ;
ð1Þ

where f† and s† are creation operators of the two
(approximately) independent spin wave modes, supported
by the two levels f and s. The kets jnfi; jnsi for n ∈ f0; 1g
stand for collective spin waves being excited by n quanta.
In the second step, spin-photon entangled states, using

the spin wave modes f and s, are created, based on an
extended version of the scheme described in Ref. [30] and
collective enhancement. Each spin-photon entangled state
is created by the pulse sequence shown in Fig. 2(b),
involving ½π�s;r2, ½π=

ffiffiffi
n

p �g;r1, ½π�e;r1, ½π�s;r2. This particular
sequence results in emitting a single photon (from e → g
transition) provided that the level s is empty, i.e.,
j0sijvacuumi → j0sij 1photoni. With additional pulses
applied before and after this sequence flipping between
0f↔1f, 0s↔1s, and swapping f and s waves, and proper
timing, this is repeated 4 times to produce four time-bin
separated light pulses, which are entangled with the two
spin waves,

ðj0fijt2i þ j1fijt4iÞðj0sijt1i þ j1sijt3iÞ; ð2Þ

where jtjijtki is a two photon state with photons emitted at
times tj and tk.
In the third step, pairs of time-bin encoded photon pulses

from two neighboring ensembles are detected by interfering
the two pulses on a beam splitter and measuring two-
photon coincidences [31–33]. As a result, entangled states
between neighboring atomic ensembles, k and kþ 1, are
created [34,35],

j0sikj1fikþ1 � j1sikj0fikþ1; ð3Þ

(a)

(b)

(c)

FIG. 2. Steps to generate pairwise entanglement. (a) Pulse
sequence used to initialize the spin waves f and s in an ensemble.
(b) Pulse sequence inducing a conditional photon emission, the
emitted photon becomes entangled with the spin state s. (c) In
three steps, neighboring ensembles generate pairwise entangle-
ment between their collective excitations. First, they induce 0þ 1
superpositions of the two independent spin waves, f† and s†.
Then, applying the conditional photon emission sequence four
times, they emit four pulses, containing two photons total. Each
pair of photons is correlated with a unique spin state. Finally,
photons are measured with a linear optics setup, and 2-photon
coincidences indicate the creation of entanglement between
neighboring ensembles. (Blue and red shadings indicate positive
and negative correlation between qubits, respectively).
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where the individual kets represent the states of f and s spin
waves in the two ensembles; see Fig. 2(c).
In the fourth step, the ensembles perform a local CNOT

operation on the two collective degrees of freedom, f† and
s†. This is done with the following pulse sequence, ½π�s;r2,
½π�f;r1, ½π=

ffiffiffi
n

p �g;r1, ½π�f;r1, ½π�s;r2, shown on Fig. 3(a). This
promotes any population in s to r2, which then blocks the
path g↔r1↔f. The result is a conditional flip j0fi↔j1fi,
conditioned on having zero s† excitations. If we perform
f↔s swaps before and after this process, we get a coherent
flip between j0f; 0si↔j0f; 1si.
To understand the resulting state, let us consider two

entangled links, connecting three neighboring ensembles
k − 1; k, and kþ 1 as shown in Fig. 3(b). The correspond-
ing state, before the fourth step, is

ðj0sk−1 ; 1fki þ j1sk−1 ; 0fkiÞ ⊗ ðj0sk ; 1fkþ1
i þ j1sk ; 0fkþ1

iÞ;
ð4Þ

where jnsk−1 ; nfki ⊗ jnsk ; nfkþ1
i indicate the number of

excitations in the modes sk−1; fk; sk; fkþ1 of the three
ensembles. After the conditional flip of sk and measure-
ment of nsk , yielding m ∈ f0; 1g, the state becomes
j0; 1; 1 −mi þ j1; 0; mi, where the remaining kets stand
for jnsk−1 ; nfk ; nfkþ1

i. Depending on the outcome, either
only fk (if nsk ¼ 1) or the entire right-hand side (if nsk ¼ 0)
needs to be flipped in order to obtain the desired GHZ
state, ⊗

k
j0fki þ⊗

k
j1fki, of the f excitations of each clock,

k ¼ 1; 2; :::::;K.
In the fifth step, each clock locally extends the

entanglement from its f degree of freedom to all atoms
using a collective Rydberg gate similar to the ones
introduced in Refs. [36,37]. In the case when each clock

consists of a single blockaded ensemble, the pulse
sequence ½π�f;s, ½π=2�s;r2, (½π= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n − jþ 1
p �g;r1; ½π=

ffiffi
j

p �f;r1
for j ¼ 1; 2; :::::; n), ½π�s;r2, shown in Fig. 4(a), does exactly
that. This sequence transfers the atoms one by one from g to
f only if r2 is unoccupied, and gets blocked otherwise. The
result is

⊗
K

k¼1
j0fik þ ⊗

K

k¼1
j1fik → ⊗

K

k¼1
jfi⊗n þ ⊗

K

k¼1
s†jgi⊗n; ð5Þ

where jfi and jgi denote the state of a single atom. Finally,
we get rid of the s excitation with a series of pulses that
move it back to g: ½π�f;s, ½π�f;r1, ½π�f;s, ½π=

ffiffiffi
n

p �g;r1, and end
up with jfi⊗Kn þ jgi⊗Kn, a fully entangled state of all
N ¼ Kn atoms in the network.
In practice, lattice clocks can employ n ¼ 103 − 104

atoms each, that cannot be manipulated simultaneously
with high fidelity using Rydberg blockade (see discussion
below). In such a case, the atoms can be separated intoM ∼
10 ensembleswithin each clock, as shown in Fig. 1. Efficient
local entanglement can be achieved with techniques
described in Ref. [38] or by using an individually addressed
“messenger” atom, that can be moved to the vicinity of each
ensemble to entangle all atoms within each clock using
dipole-dipole interaction. In such a case, themessenger atom
can be used first to extend the entanglement to all ensembles
in each clock, resulting in a state j1fiKM þ j0iKM, after
which the procedure shown in Fig. 4(a) applied within each
ensemble can be used to a fully entangled state of all
N ¼ KMn atoms in the network [39].
Next, we investigate the robustness of our protocol in

light of realistic physical imperfections. We assume that all
imperfections decrease the coherence between the two
components of the GHZ state, and therefore the fidelity
can be written as F ¼ ½1þ expð−εtotÞ�=2, where εtot is the
sum of the errors. The errors arising during each nonlocal
connection step εnonlocal and the errors arising during a local
GHZ creation in one clock εlocal add up to the total error

(a) (b)

FIG. 3. Connecting links into nonlocal GHZ state. (a) CNOT

gate between the two excitations f and s: If level s is occupied,
then the coherent (de)excitation of the f level is blocked by the
Rydberg blockade between the r1 and r2 intermediate levels,
otherwise it succeeds. (b) Connecting two entanglement links.
The local CNOT and measurement operations on ensemble k
entangle the two, initially independent, parts of the system:
sk−1; fk and sk; fkþ1. Depending on the outcome of the meas-
urement, either only fk, or the entire right-hand side needs to be
flipped in order to arrive to the proper GHZ state.

(a) (b)

FIG. 4. Local GHZ creation. (a) Conditional, local GHZ state
generation: Any excitation in level s prevents the transfer from g
to f. (b) The local entangling operation extends the GHZ state
from the f spin wave to all atoms. As a result, every atom in the
network gets entangled.
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εtot ¼ ðK − 1Þεnonlocal þ KMεlocal: ð6Þ
This error increases linearly with the total number of atoms
in the network, N, and the coefficient, ðεnonlocal=Mþ
εlocalÞ=n, depends on the number of atoms, n, within a
single atom cloud under blockade. For a certain optimal
local atom number nopt, the total fidelity is maximal, i.e.,
decreases with the slowest rate, as N increases.
To be specific, we focus on a possible implementation

of our scheme with ensembles of neutral ytterbium atoms
whose relevant electronic levels are shown in Fig. 5. We
identify the following levels of neutral Yb relevant for
our protocol: jgi ¼ j6s2ð1S0Þi, jfi ¼ j6s6pð3P0Þi, jsi ¼
j6s6pð3P2Þi, and jei ¼ j6s6pð1P1Þi, and two Rydberg
levels jr1i ¼ j6s ~npm¼þ1ð1P1Þi and jr2i ¼ j6s ~nsð3S1Þi
with the same principle quantum number ~n. Collective
enhancement and phase matching of the laser pulses make
the emitted photons leave in a well-defined, narrow solid
angle, resulting in high photon collection efficiency;
see Ref. [39] for details. Because of the different sym-
metries of these states, the coherent coupling can be done
via 1-photon transitions for r1↔g and r2↔s, and requires
2-photon transitions for r1↔e and r1↔f. We envision the
atoms being held in position by an optical lattice with
period a ¼ 275.75 nm, each potential minimum holding
exactly one Yb atom. (The lattice intensity can be modu-
lated during the Rydberg state excitation [45]). Overall
fidelity turns out to depend on the lattice geometry; it is the
highest for the 3D optical lattice.
We consider the following errors in our analysis. During

nonlocal connection, we take into account the finite r1-r2
interaction, which allows the creation of an r1 excitation
with some small probability, even if r2 is populated, the
finite lifetime of the s and r2 levels, and the dark-count rate
of photodetectors. For the local GHZ creation step, we
account for the same imperfection of the r1-r2 blockade as
for the nonlocal entangling step, the finite lifetimes of the
Rydberg levels r1 and r2, and the imperfect self-blockade

of the single excited Rydberg states r1. (See Ref. [39] for
details.) We estimate the effect of these errors, and numeri-
cally optimize the free parameters: the Rabi frequency Ω of
the transferring pulses g → r1 and r1 → f, and the number
of local atoms n, for principle quantum numbers, 50 ≤ ~n ≤
150 of the Rydberg levels, in order to find the minimal error
per atom, E≔εtot=N.
To illustrate, for Rydberg levels ~n ¼ 120, we find that

the highest fidelity is reached for nopt ≈ 146, andΩ ¼ 105γ,
where γ ∼ 103 s−1 is the natural linewidth of the Rydberg
levels, for a clock size of ðMnÞopt ¼ 2500. In this case, the
error per atom is Emin ¼ ½εtot=N�min ¼ 1.8 × 10−5.
Contributions of the different error sources are shown in
Table I. We find that the decay of the Rydberg level and
imperfect blockade cause the majority of imperfections,
both arising during the critical step, local extension of the
GHZ state. (See Ref. [39] for more details).
With the optimal ensemble size nopt, determined above, we

consider the total number of entangled atoms N. Although
having more atoms always results in improved clock pre-
cision, entangling all available atoms is not necessarily
optimal. To see this, we compare the stability of the entangled
clock network and a nonentangled network, and find an
optimal entangled atom number Nopt by maximizing the
stability gain over the nonentangled scheme,

G ¼ σnon−ent
σent=ð2F − 1Þ ¼ e−EN

π

8

ffiffiffiffiffiffiffiffiffiffiffi
N

logN

s
; ð7Þ

where σent ¼ ð1=ω0τÞð8=πÞð
ffiffiffiffiffiffiffiffiffiffiffi
logN

p
=NÞ (from Ref. [6],

assuming perfect fidelity, and that τ is smaller than the
reduced atomic coherence time γ−1at =N) and σnon−ent ¼
ð1=ω0τÞð1=

ffiffiffiffi
N

p Þ (for N independent atoms) are the Allan
deviations of the two schemes, where ω0 is the central
frequency and τ is the total available measurement time.
The additional factor of 2F − 1 ¼ e−EN is due to the reduced
Fisher information of a nonpure GHZ state, where F is the
fidelity of the initial state. (SeeSupplementalMaterial [39] for
details.) For E ¼ Emin ¼ 1.8 × 10−5, Eq. (7) is maximized

FIG. 5. Implementation of our protocol in the lower level of
neutral Yb. We assign the roles of g and f to the clock levels, the
role of s to the metastable J ¼ 2 level of 6s6p, and the role of e to
the 1P1 excited state, which spontaneously decays to the ground
state.

TABLE I. The absolute and relative contribution of the different
error sources to the total error per atom E, at ~n ¼ 120,
Ω ¼ Ωopt ¼ 105γ, and n ¼ nopt ¼ 146, after numerical optimi-
zation, for a 3D lattice. (See Ref. [39] for 2D results.)

Errors in 3D ensemble Error per atom Ratio in total

Imperfect blockade (e1) 2.6 × 10−6 14%
Rydberg decay (e2) 1.6 × 10−5 86%
Self-blockade (e3) ∼10−11 < 0.1%
r2 decay (nonlocal) (e4) ∼10−11 < 0.1%
Photon detection (e5) ∼10−12 < 0.1%
Memory error (e6) ∼10−8 < 0.1%
Photon collection (e7) ∼10−8 < 0.1%

Total error per atom 1.8 × 10−5 100%
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with optimal atom number Nopt ≈ 1=ð2EminÞ ≈ 25 000,
where Gmax ∼ 12, and F ¼ ½1þ e−NoptEmin �=2 ¼ 0.82. The
optimal gain is achieved by 25 000 entangled atoms distrib-
uted in Kopt ¼ Nopt=ðMnÞopt ≈ 10 clocks.
We presented and analyzed a protocol capable of fully

entangling ensembles of neutral atoms located in different
atomic clocks. We showed that a realization of our scheme
with neutral Yb ensembles is feasible and provides sig-
nificant gain over nonentangled schemes even in the light
of physical imperfections. Our results provide the first
detailed proposal for a neutral atom clock network that can
serve as a first prototype of the global quantum clock
network outlined in Ref. [6].
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