229 research outputs found
Recommended from our members
Overview and status of the 0.5NA EUV microfield exposure tool at Berkeley Lab
A 0.5-NA extreme ultraviolet micro-field exposure tool has been installed and commissioned at beamline 12.0.1.4 of the Advanced Light Source synchrotron facility at Lawrence Berkeley National Laboratory. Commissioning has demonstrated a patterning resolution of 13 nm half-pitch with annular 0.35-0.55 illumination; a patterning resolution of 8 nm half-pitch with annular 0.1-0.2 illumination; critical dimension (CD) uniformity of 0.7 nm 1σ on 16 nm nominal CD across 80% of the 200 um x 30 um aberration corrected field of view; aerial image vibration relative to the wafer of 0.75 nn RMS and focus control and focus stepping better than 15 nm
Current-voltage Relation For A Field Ionizing He Beam Detector
Emerging interest in utilizing the transverse coherence properties of thermal energy atomic and molecular beams motivates the development of ionization detectors with near unit detection efficiency and adequate spatial resolution to resolve interference fringes of submicron dimension. We demonstrate that a field ionization tip coupled to a charged particle detector meets these requirements. We have systematically studied the current-voltage relationship for field ionization of helium using tungsten tips in diffuse gas and in a supersonic helium beam. For all 16 tips used in this study, the dependence of ion current on voltage for tips of fixed radius was found to differ from that for tips held at constant surface electric field. A scaling analysis is presented to explain this difference. Ion current increased on average to the 2.8 power of voltage for a tip at fixed field and approximately fifth power of voltage for fixed radius for a liquid nitrogen cooled tip in room temperature helium gas. For the helium beam, ion current increased as 2.2 power of voltage with constant surface field. The capture region of the tips was found to be up to 0.1 mu m(2) for diffuse gas and 0.02 mu m(2) in the beam. Velocity dependence and orientation of tip to beam were also studied
Imaging single cells in a beam of live cyanobacteria with an X-ray laser
Citation: van der Schot, G., Svenda, M., Maia, F., Hantke, M., DePonte, D. P., Seibert, M. M., . . . Ekeberg, T. (2015). Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nature Communications, 6, 9. doi:10.1038/ncomms6704There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.Additional Authors: Almeida, N. F.;Odic, D.;Hasse, D.;Carlsson, G. H.;Larsson, D. S. D.;Barty, A.;Martin, A. V.;Schorb, S.;Bostedt, C.;Bozek, J. D.;Rolles, D.;Rudenko, A.;Epp, S.;Foucar, L.;Rudek, B.;Hartmann, R.;Kimmel, N.;Holl, P.;Englert, L.;Loh, N. T. D.;Chapman, H. N.;Andersson, I.;Hajdu, J.;Ekeberg, T
Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser
Citation: Ekeberg, T., Svenda, M., Abergel, C., Maia, F., Seltzer, V., Claverie, J. M., . . . Hajdu, J. (2015). Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser. Physical Review Letters, 114(9), 6. doi:10.1103/PhysRevLett.114.098102We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.Additional Authors: Andersson, I.;Loh, N. D.;Martin, A. V.;Chapman, H.;Bostedt, C.;Bozek, J. D.;Ferguson, K. R.;Krzywinski, J.;Epp, S. W.;Rolles, D.;Rudenko, A.;Hartmann, R.;Kimmel, N.;Hajdu, J
Speckle Patterns With Atomic And Molecular De Broglie Waves
We have developed a nozzle source that delivers a continuous beam of atomic helium or molecular hydrogen having a high degree of transverse coherence and with adequate optical brightness to enable new kinds of experiments. Using this source we have measured single slit diffraction patterns and the first ever speckle-diffraction patterns using atomic and molecular de Broglie waves. Our results suggest fruitful application of coherent matter beams in dynamic scattering and diffractive imaging at short wavelength and with extreme surface sensitivity
A data set from flash X-ray imaging of carboxysomes
Citation: Hantke, M. F., Hasse, D., Ekeberg, T., John, K., Svenda, M., Loh, D., . . . Maia, F. R. N. C. (2016). A data set from flash X-ray imaging of carboxysomes. Scientific Data, 3. doi:10.1038/sdata.2016.61Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115±26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere
The XMM Cluster Survey: X-ray analysis methodology
The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters
using all publicly available data in the XMM-Newton Science Archive. Its main
aims are to measure cosmological parameters and trace the evolution of X-ray
scaling relations. In this paper we describe the data processing methodology
applied to the 5,776 XMM observations used to construct the current XCS source
catalogue. A total of 3,675 > 4-sigma cluster candidates with > 50
background-subtracted X-ray counts are extracted from a total non-overlapping
area suitable for cluster searching of 410 deg^2. Of these, 993 candidates are
detected with > 300 background-subtracted X-ray photon counts, and we
demonstrate that robust temperature measurements can be obtained down to this
count limit. We describe in detail the automated pipelines used to perform the
spectral and surface brightness fitting for these candidates, as well as to
estimate redshifts from the X-ray data alone. A total of 587 (122) X-ray
temperatures to a typical accuracy of < 40 (< 10) per cent have been measured
to date. We also present the methodology adopted for determining the selection
function of the survey, and show that the extended source detection algorithm
is robust to a range of cluster morphologies by inserting mock clusters derived
from hydrodynamical simulations into real XMM images. These tests show that the
simple isothermal beta-profiles is sufficient to capture the essential details
of the cluster population detected in the archival XMM observations. The
redshift follow-up of the XCS cluster sample is presented in a companion paper,
together with a first data release of 503 optically-confirmed clusters.Comment: MNRAS accepted, 45 pages, 38 figures. Our companion paper describing
our optical analysis methodology and presenting a first set of confirmed
clusters has now been submitted to MNRA
Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser
Citation: Ekeberg, T., Svenda, M., Seibert, M. M., Abergel, C., Maia, F. R. N. C., Seltzer, V., . . . Hajdu, J. (2016). Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser. Scientific Data, 3. doi:10.1038/sdata.2016.60Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms
Liquid Heterostructures: Generation of Liquid-Liquid Interfaces in Free-Flowing Liquid Sheets
Chemical reactions and biological processes are often governed by the
structure and transport dynamics of the interface between two liquid phases.
Despite their importance, our microscopic understanding of liquid-liquid
interfaces has been severely hindered by difficulty in accessing the interface
through the bulk liquid. Here we demonstrate a method for generating large-area
liquid-liquid interfaces within free-flowing liquid sheets, which we call
liquid heterostructures. These sheets can be made thin enough to transmit
photons from across the spectrum, which also minimizes the amount of bulk
liquid relative to the interface and makes them ideal targets for a wide range
of spectroscopies and scattering experiments. The sheets are produced with a
microfluidic nozzle that impinges two converging jets of one liquid onto two
sides of a third jet of another liquid. The hydrodynamic forces provided by the
colliding jets both produce a multilayered laminar liquid sheet with the
central jet is flattened in the middle. Infrared microscopy, white light
reflectivity, and imaging ellipsometry measurements demonstrate that the buried
layer has a tunable thickness and displays well-defined liquid-liquid
interfaces, and that the inner layer can be thinner than 100 nm.Comment: 30 pages, 8 figures, 1 table. Supplement: 19 pages, 8 figure
- …
