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Emerging interest in utilizing the transverse coherence properties of thermal energy atomic and
molecular beams motivates the development of ionization detectors with near unit detection
efficiency and adequate spatial resolution to resolve interference fringes of submicron dimension.
We demonstrate that a field ionization tip coupled to a charged particle detector meets these
requirements. We have systematically studied the current-voltage relationship for field ionization of
helium using tungsten tips in diffuse gas and in a supersonic helium beam. For all 16 tips used in
this study, the dependence of ion current on voltage for tips of fixed radius was found to differ from
that for tips held at constant surface electric field. A scaling analysis is presented to explain this
difference. Ion current increased on average to the 2.8 power of voltage for a tip at fixed field and
approximately fifth power of voltage for fixed radius for a liquid nitrogen cooled tip in room
temperature helium gas. For the helium beam, ion current increased as 2.2 power of voltage with
constant surface field. The capture region of the tips was found to be up to 0.1 �m2 for diffuse gas
and 0.02 �m2 in the beam. Velocity dependence and orientation of tip to beam were also studied.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3081641�

I. INTRODUCTION

Thermal energy helium atom beams having de Broglie
wavelengths on the order of 0.1 nm have been widely ap-
plied to study surface structure and dynamical properties.1,2

Applications that extract the coherent fraction from such
beams in one transverse dimension have been carried out,3–6

and recent transverse dimensional coherent experiments have
been accomplished.7,8 Spatial filtering renders the coherent
flux available in such experiments many orders of magnitude
lower than the incoherent flux used in conventional helium
scattering experiments. For this reason, these emerging ap-
plications motivate the development of detectors with near
unit helium atom detection efficiency and adequate spatial
resolution to resolve interference fringes of submicron
dimension.9 A candidate design that satisfies these require-
ments consists of a field ionization �FI� tip coupled to a
charged particle detector. A sharp tip at high voltage first
polarizes and then binds nearby atoms and molecules until
they field ionize, thereby satisfying the requirement of high
ionization efficiency over a small capture region.10 FI detec-
tors are also thought to have picosecond response times. The
area of the capture region, and thus the spatial resolution of
the detector, depends on the size of the tip, the applied field,
and the properties of the gas source. Previously reported
measurements of the capture region for an ambient gas near
equilibrium and its dependence on tip parameters have led to
divergent results.11–16 Moreover, just two measurements,9,17

for a directed, supersonic gas source have been reported and
the dependence on tip parameters was not systematically in-
vestigated. This capture region in a supersonic beam is

smaller than desired in some applications, and in any case
one would like to understand and to control the size of cap-
ture region.

The capture region of an FI tip is highly dependent on
tip shape, as is implied by the divergent results of previous
studies. A tip radius can be estimated by Fowler–Nordheim
equation, scanning electron microscopy �SEM� image, or
field ion microscopy, but attempts to model capture region
based on a single parameter, such as tip radius, are only very
roughly quantitative. Such a model does not even allow for
consistent qualitative prediction; in our experience a smaller
FI tip may not necessarily have smaller capture region than a
larger radius tip. There has been considerable work over the
last three decades on gas FI for focused ion beam, FIB,
sources as recently reviewed by Tondare.18 While having
some relevance to detector applications, it is intensity and
brightness rather than overall ion current that is the desired
for FIB application. Multiple detectors used as either two
dimensional arrays19,20 or “activated” wires in which sharp
filaments are grown or deposited on a surface21,22 have been
used to produce high ion current for sample analysis but at
the time of this writing activated surfaces have shown very
little promise as high efficiency, high resolution field ion
detectors, and two dimensional arrays would require consid-
erable development.

The characteristics of I-V curves from field ionizing tips
in the presence of gases has been well studied and the physi-
cal mechanisms involved are well understood.10,23 Two volt-
age regions characterize a typical I-V curve for a cold tip, as
shown in Fig. 1: �1� above a threshold voltage there is ini-
tially a steep rise in the ion current as the tunneling of elec-
trons from atom to tip turns on, and �2� above a “knee”
voltage there is a less steep rise, where the ion current is flux
limited rather than tunneling limited. We are particularly in-a�Electronic mail: dandeponte@gmail.com.

JOURNAL OF APPLIED PHYSICS 105, 044910 �2009�

0021-8979/2009/105�4�/044910/8/$25.00 © 2009 American Institute of Physics105, 044910-1

http://dx.doi.org/10.1063/1.3081641
http://dx.doi.org/10.1063/1.3081641


terested in the second of these regions since it allows us to
vary the size of the capture region. For a tungsten tip at room
temperature and approaching the knee voltage, the surface
field at the tip of about 500 MV/cm is sufficient to cause
tungsten to evaporate.24 Colder tips have a higher evapora-
tion field 540 MV/cm at 77 K.25 Thus, for room temperature
tungsten tips used to ionize helium, only the first region of
the I-V curve is observable without altering the shape of the
tip.

II. EXPERIMENTAL PROCEEDURE

A. FI Tip preparation

FI tips can be made by a several methods.26–30 We chose
to electrochemically etch 200 micron W wire in a 0.5 M
solution of NaOH using a few volts 60 Hz ac. The sharpness
of the tip depends on concentration, length of wire, time in
solution, and current. The etching process produces a conical
shape to the wire below the surface of the solution. The cone
shortens as the etching proceeds; in general, longer cones
have sharper ends than shorter cones,28 and etching at a
faster rate produces sharper tips than etching at slower rates.
FI tips made by electrochemical etching did not have any
observable limit to shelf life. FI tips that were left at atmo-
sphere for months were still able to ionize helium when in-
stalled in the detector. An oxide layer,31 as well as other
condensates which form on the tungsten over time can be
removed as the tip is brought up to high voltage. The FI tips
were not annealed, which in the absence of an applied field
will produce a spherical tip due to surface tension,29,32 but a
conical tip is necessary for field evaporation.

FI tips with a rough or fractured surface were also tried.
The dc voltage lamella drop off technique produces tips of
short shank and rough surface as desired for scanning tunnel
microscope tips.33 The rough surface of the broken wire can
be used to produce ions and has been employed in the past
for field desorption and ionization.30 When used for FI, we
found ion current from such tips fluctuates rapidly in time,
making the tip unsuitable as an ionization detector. A tip that
is operating properly will appear to show only shot noise
while a rough surface can produce an ion current that occa-
sional fluctuates by a factor of 2.

Occasionally a good tip will fail during evaporation but
still be able to produce ions if the voltage is increased fur-

ther. This can happen if the tip arcs, melting and reforming
the tip at larger radius. Dyke and Dolan27 have reported us-
ing “vacuum arcing” to increase the size of their field emis-
sion tips, but we find the resulting field ion current too un-
stable for our use. Our tips are made from polycrystalline
wire and can fail by breaking at grain boundaries. Polycrys-
talline wire contains crystallites tens of nanometers wide
which can be removed by the field.31

B. FI tip testing

After electrochemical etching, the tips were rinsed in
distilled water and air dried. For FI testing, each tip was
individually mounted on the end of a high voltage vacuum
feedthrough in front of a channel electron multiplier �CEM�.
To prevent secondary electrons from being drawn away from
the multiplier, a grounded spherical wire screen was placed
between the tip and the multiplier cone 1 cm away from the
tip. The tip could be cooled to 80 K via heat conduction
through the center conductor of the high voltage vacuum
feedthrough to a liquid nitrogen reservoir outside the
vacuum. For FI measurements, the LABVIEW data acquisition
program was used both to control the voltage on the tip and
to measure the ionization count rate. The tip voltage was
incremented in 10 V steps with an adjustable dwell time on
each voltage step, ranging from 2 s for smaller tips at lower
count rates to 300 ms for larger tips at higher count rates.
The output pulses from the CEM were processed by a digital
amplifier discriminator, and a count rate was calculated from
the number of pulses within a narrow time window, typically
10–100 ms.

Diffuse gas ionization experiments were carried out in a
turbo-molecular pumped ultrahigh vacuum test chamber with
a base pressure of 3�10−10 mbar. A background pressure of
1.3�10−8 mbar of helium was used for all diffuse gas ion-
ization rate measurements. It has been shown34–36 that the
ion current from a field ionizing tip is greatest from “hot
spots” on the tip surface that may change over time, and that
the ion current may be distributed off the axis of the tip. Tips
were first tested in an apparatus in which the tip could be
moved laterally in front of a CEM, to test if the angular
distribution of ions was significantly skewed away from the
tip axis. Any tips that emitted ions noticeably off axis were
discarded. Angular distribution also changes with field, be-
coming wider with increasing field strength.37 It is therefore
important to use a multiplier with a large opening to collect
as much of the ion current as possible. The ends of the tips
were held in the plane of a 3 cm diameter multiplier cone
opening, allowing for current collection over a full hemi-
sphere. As the ionization threshold voltage is sensitive both
to the tip-to-screen distance and shape of the tip holder, a
fixture was used to repeatedly position the tip to within 1 mm
of the plane of the multiplier cone opening, and to within 2
mm of the center of the cone.

The helium beam ionization experiments were per-
formed in an ion-pumped ultrahigh vacuum system with a
base pressure of 2�10−10 mbar. A sketch of the apparatus is
given in Fig. 2. The helium beam was generated using a ten
micron steel nozzle, and collimated first by a skimmer and

FIG. 1. I-V characteristic for helium ionization from a W tip at 77 K show-
ing distinct regions, reading from left to right: ionization of background gas,
a steep rise at the onset of He ionization, a lower slope beyond the knee
voltage and a rise at the far right due to W evaporation.
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then by a 200 �m aperture, which both serve as vacuum
barriers between chambers. Due to space limitations a mul-
tiplier with a smaller, one-centimeter, opening was used. The
tip was held a few millimeters away from a grounded screen
covering the multiplier. Tips were welded to a small,
50 mm3 steel mount that was thermally and electrically in-
sulated from the linear motion stage to which it was attached.
The mount was cooled via conduction through the high volt-
age feedthrough to a liquid nitrogen reservoir.

Starting with a newly prepared tip, a set of I-V scans was
taken following incremental field evaporation of the FI tip.
For the first scan, the tip voltage was raised until a helium
signal was observed, and then held steady until field evapo-
ration ceased and the ion current stabilized. I-V scans were
taken by decreasing the voltage from this value, and scans
taken in this fashion were repeatable and showed no hyster-
esis. All diffuse gas I-V scans were done both with and with-
out helium, so that contribution to the ion count from the
UHV background gases could be subtracted. For the helium
beam measurements, a movable flag was used to block the
beam inside the UHV chamber. After each scan was taken in
the beam, another scan would be taken with the beam
blocked by the flag so that diffuse background gas contribu-
tion to the ion current could be recorded. After a repeatable
I-V scan was acquired, the tip voltage was slowly raised by
field evaporation to a new maximum value, typically 20%
higher, to create a tip of larger radius. Another scan would be
taken, and the process repeated until the tip failed. For some
tips, this process was successfully repeated five to ten times
before the tip failed. The majority of tips either failed on the
first cycle or only survived a few cycles before failing. We
report here a data set collected from three tips at room tem-
perature and eleven tips at 80 K.

III. RESULTS

A. FI tips in a diffuse gas

A set of nine I-V curves is shown in Fig. 3�a�, measured
from a single FI tip immersed in a diffuse helium gas that
underwent successive field evaporation to higher operating
voltages. The curves are plotted on a log-log scale and la-
beled by their highest operating voltage, which vary from 2.2
up to 7.2 kV. Each individual I-V curve gives the dependence
of ion current on surface field at constant tip radius. The
upturn at the highest voltages on some of these curves is due
to field evaporation, which could be eliminated by starting

the I-V scan a few hundred volts below the maximum volt-
age. The scans all exhibit the basic behavior described pre-
viously: an ionization threshold voltage, followed by a steep
increase, followed by a less steep increase past what we call
the “knee” voltage. Above the knee voltage, in the flux-
limited regime, the ion current may be approximated as the
power law relationship

I � V� �constant tip radius� �1�

with an average � between 4.5 and 5.5. The exponent � is
dependent on tip shape11 and tip temperature13 and is not
constant, but decreases with increasing voltage above the
knee. There is also some variation in � from one I-V scan to
another.

The change in the I-V curves following successive field
evaporation show the effect of tip radius on the I-V charac-
teristics. As the highest operating voltage is increased, field
evaporation increases the radius of curvature at the tip. This
can be seen in Fig. 4, which shows two SEM images of the
same tip before and after field evaporation. Field evaporation
removes the greatest material from where the radius of cur-
vature is smallest, and where the surface field is the largest.

FIG. 2. A schematic of the supersonic beam apparatus showing the beam
nozzle, the skimmer �which serves as a first vacuum barrier�, and a 200 �m
aperture �which serves as a second vacuum barrier�. In the detection cham-
ber is a movable flag to block the beam, and a FI tip in front of a CEM
covered by a grounded screen.

FIG. 3. �Color online� Shown in �a� is a set of nine I-V scans from a single
tip taken after successive field evaporation from 2.2 to 7.2 kV and in �b� the
same data with all scans scaled to a single I-V curve. The mapping to a
single curve generates a set of �CI ,CV� scaling pairs, shown in Fig. 5.

FIG. 4. SEM pictures of a tip before and after field evaporation showing an
increase in the tip radius. In �a� the maximum tip voltage was 10 kV; in �b�
the maximum tip voltage was increased to 15 kV.
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At the very end of the tip, the shape is nearly spherical, and
the radius has clearly increased upon field evaporation. Away
from the end of the tip, in the “shank” region, the shape of
the tips are different, hence the tip before and after field
evaporation deviates from geometrical similarity the further
one looks away from the end of the tip. The dominant effect
on the I-V curves results from the increase in tip radius.
Examining the I-V curves in Fig. 3�a�, for the larger size tips
it takes a higher voltage to achieve the same surface electric
field, and hence the threshold and knee voltages shift to
higher values. The ion current at the knee voltage also in-
creases.

All the I-V curves are similar in that they can be made to
lie on top of one another by a shift along each axis, with the
mapping,

log�I�� = log�I� + cI,

log�V�� = log�V� + cv. �2�

All curves in Fig. 3�a� have been shifted in this manner to lie
on top of one another as shown in Fig. 3�b�. The pairs �cI ,cV�
used to scale each scan in Fig. 3 have been plotted in Fig.
5�a� and the slope of the resulting line, �, is used to deter-
mine the current-voltage relationship at constant field

I � V� �constant surface field� . �3�

Relations �2� and �3� have held up with the same degree of
agreement as in Fig. 3�b� for every tip that survived the
process of successive field evaporation to produce a set of
I-V curves, but there is a large spread in � value obtained for
each of the 11 different tips. In Fig. 5�b�, the knee coordi-
nates for eleven such tips are plotted versus tip voltage, and
in Table I a summary of the data sets for these eleven tips is
presented. The number of successive field evaporation cycles
for these eleven tips vary from two up to ten. The scaling
parameter � varies from 2 up to 3.5, with an average of 2.8,
somewhat higher than �=2 predicted by Muller.29 Two room
temperature tips were also studied to determine �, shown in
Table I. Even though these warm tips had very little working
range, and � values could be determined, there was still suf-
ficient structure to permit these scans to be scaled to a uni-
versal curve with a high degree of accuracy.

While relations �2� and �3� hold for each tip, no such
relation was found when comparing different tips. Two tips
with the same highest operating voltage may produce ion
currents which differ by an order of magnitude if one was
chemically etched and the other first etched to a smaller ra-
dius then field evaporated to its final size. This may be re-
lated to variation in tip shape during evaporation or etching
as explained in Sec. IV.

The capture region for FI tips in diffuse gas is
determined9 from the measured ion count rate. With no field
and assuming a Maxwell–Boltzmann gas at temperature T

FIG. 5. �Color online� Shown in �a� are the nine �CI ,CV� scaling pairs for
the data shown in Fig. 3, with the slope of the best fit line determining the
exponent beta. Data for all tips are shown for �b� static gas and �c� super-
sonic helium beam, at 30° and 90° to the tip.

TABLE I. Exponent beta values for tungsten FI tips at 77 K in diffuse
helium gas. The third column is the highest voltage to which the tip was
field evaporated without failure, and the fourth column is the ratio of the
highest evaporation voltage to the voltage at which field evaporation was
first observed. Also included are beta values for two warm tips, as well as
data from other studies.

� Number of data points
Vmax

�kV� Vmax /Vmin

2.85�0.06 a 9 7.2 3.8
2.5�0.3 3 14.5 1.5
2.9�0.1 3 25 1.9
2.0�0.3 5 33 1.5
2.4�0.1 6 7.2 2.4
2.1�0.2 4 26 1.7
2.5�0.2 4 25 1.9
3.4�0.4 3 18 1.5
2.7�0.1 5 12.5 2.5
2.3�0.1 6 18 2.5
3.5�0.1 6 12.5 2.5

2.5�0.1 b 9 13 2.9
2.3�0.3 b 7 15 1.5
2.3�2.9 c 5 1.3
2.5–2.8d 5 1.7
2.5–3e 5 2.5

aThese values used for Fig. 5.
bWarm tips
cReference 42, �111� plane
dReference 42, �011� plane
eReference 11.
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and pressure P, Ṅ atoms per second will pass through a
spherical surface whose cross sectional area is given by

� =
Ṅ

P
��mkT

8
�4�

with m the mass of a helium atom. For a FI tip, if the as-
sumption is made that any atom entering the capture region

is ionized, � may then calculated using Ṅ to be the measured
ion count rate. The largest values for count rate, that closest
to the evaporation voltage, was used to calculate � for all
cold tips. The values of � in our diffuse gas setup for a 77 K
tip in 300 K helium ranged from 0.1 to 0.001 �m2 depend-
ing on voltage before and after evaporation. There have been
many other reports on current or count rate versus pressure
for diffuse gas11–16 which using Eq. �4� range in value of �
from a few �m2 to a few hundredths �m2 depending on gas
and tip temperature and tip size. In older reports there is no
clear trend in � with tip size or temperature from one report
to the next. It was demonstrated11 that difficulty in account-
ing for secondary electrons may have lead to some of this
large range in � however variation in tip shape is also a
contributing factor.

B. FI tips in a supersonic helium beam

The above procedure was repeated for six tips using a
supersonic helium beam. We found � between 7.6 and 8.2
for four tips in the beam; we were unable to suitably fit data
with a straight line for the two remaining tips. It has been
reported16 that the size of the capture region around a tip
depends on the angle that the tip makes with the beam. We
examined tips at 30° to the beam axis and perpendicular to
the beam axis as a means to decouple the ionization and
capture region effect on � but negligible difference was
found. Figure 5�c� shows the �CI ,CV� pairs for all six tips
used in the beam labeled by orientation. All values of � are
shown in Table II. The average values for � at 30° and at 90°
are both 2.2.

As in Sec. III A, all scans were similar in shape. How-
ever the universal curve for the beam appears different from
that for static gas. The tips in the static gas have a more
distinct knee, a larger working range, and a smaller �, all of
which indicate a lower tip temperature. The tips in the dif-
fuse gas setup had a shorter thermal conduction path to the

liquid nitrogen reservoir and may have been colder than the
tips in the beam setup. It is also likely that the smaller mul-
tiplier opening used for the beam measurements resulted in
an underestimation of �.

There have been three reports on � for effusive
sources16,38,39 and only two for a supersonic source.9,17 A
1966 report on an effusive beam16 �at 300 K �Ref. 9�� had �
of order 1 �m2 for He, Ar, and N2. That report cites another
report of the same author of 10−6 Amp / torr sensitivity for
Ar and N2 diffuse gas, or �=0.1 �m2 using Eq. �4�. The
report on an effusive source by Woods and Fenn38 demon-
strated the utility of FI as a detector but contains no quanti-
tative information on ion current. In 1974 Mcwane and
Oates39 reported �=0.2 �m2, independent of tip size or ve-
locity, for an effusive He beam between 0.3 and 4 K. Doak9

has recently revisited this paper and cast doubt on the veloc-
ity result, reporting �=5�10−5 �m2 for a 300 K beam and
80 K tip. As for independence on tip size, it was suggested
by Mcwane and Oates that diffusion may be responsible. It
was demonstrated earlier by Halpern and Gomer40 that dif-
fusion from shank to the tip dominates supply at 4.3 K, but it
is unclear what tip temperature was used by Mcwane and
Oates. A recent paper by Piskur et al.17 report �=9.5
�10−6 and �=1.05�10−4 �m2 for a supersonic beam at
298 and 77 K, respectively, using a room temperature tung-
sten tip.

For our helium beam data, � is determined from beam
intensity I and the ion count rate;

� =
Ṅ

I
d2, �5�

where d is the nozzle to detector distance. The values of � in
our beam setup are from 3.9�10−5 to 6.2�10−4 �m2 before
evaporation and from 6.2�10−4 to 1.6�10−3 �m2 after
evaporation for a room temperature beam. This capture re-
gion is �100� smaller than that found in the diffuse gas
setup. The detector collected ions in an approximately 30°
half angle from the tip axis which is expected to result in an
underestimation of � by about 20%, far less than the mea-
sured difference.

The measured background consisted of helium ions from
the diffuse background, nonhelium ion counts and noise
from the ion pump in the detector chamber. Figure 6 shows
measured signal with the FI tip in the direct beam, the back-
ground count with the flag blocking the beam just before the
detector and the difference between the two. Both the FI tip
and the ion pump produce an ion current that is related to the
total background gas making it impossible to decouple the
ion pump and FI tip background. We are therefore unable to
directly compare � for static gas and supersonic jet.

The detection area of FI tips is velocity dependent. We
routinely use FI detectors in our helium beam apparatus and
have observed an increase in detection area as the helium
beam is cooled. Preliminary data for a liquid nitrogen cooled
tip at 71° angle to the beam show a factor of 7 difference in
detection area when used with a 300 K beam compared to a
77 K beam. This is not inconsistent with temperature depen-
dence previously reported for diffuse gas.41

TABLE II. Exponent beta values for directed helium flow, for two different
angles between beam and tip. The fourth column is the highest voltage to
which the tip was field evaporated without failure and the fifth column is the
ratio of the highest evaporation voltage to the voltage at which field evapo-
ration was first observed.

Angle Beta Number of data points
Vmax

�kV� Vmax /Vmin

30° 2.2�0.2 7 11 1.8
30° 2.1�0.2 10 15.5 2.4
90° 2.2�0.3 4 12 1.5
90° 2.1�0.1 8 9 2.7
90° 2.3�0.3 5 14 1.4
90° 2.1�0.1 15 19 3.8
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IV. GEOMETRIC SCALING

A consideration of geometric scaling sheds some light on
the mapping of the I-V curves onto a universal curve, and on
the relative magnitudes of the exponents � and �, which
characterize the dependence of the ionization current on volt-
age at constant size and constant surface field, respectively.
We consider the effect of increased size alone for geometri-
cally similar tips and then briefly discuss the effect of simul-
taneous changes in shape as well as size.

In the flux-limited regime above the voltage correspond-
ing to the knee of an I-V graph, we assume all of the flux
through some surface surrounding the tip to be ionized. For
simplicity we define this surface to enclose a volume of
space around the tip that is above a critical threshold ioniza-
tion field value. This model shows that an increase in the
voltage on the tip results in an increase in the ion current
through two effects: �1� the region above a critical threshold
field increases in size and surface area, and �2� the atomic
current density on the surface of this region increases. The
geometric scaling of the first effect can be determined solely
through consideration of the field outside of a tip. The scal-
ing of the second effect can be made within a classical treat-
ment of atom trajectories via Liouville’s theorem.

A solid conductor of arbitrary shape held at a constant
potential V0 produces an electrostatic potential outside the
conductor at location r that can always be expressed in the

form V�r� /V0= Ṽ�r /d�, where d is a characteristic size of the

conductor. The dimensionless function Ṽ�r̃�, where r̃	r /d,
can be thought of as the solution to the electrostatic problem
for a conductor of similar shape but with unit size and unit
applied potential. A neutral, polarizable atom in such an elec-
trostatic field will feel a polarization potential that to lowest
order is given by U�r�=	
�V
2, where 	 is the atomic polar-
izability. This polarization potential can also be expressed in

the form U�r� /U0= Ũ�r̃�, where U0=	�V0 /d�2. Thus if two
tips of the same shape have the same ratio V0 /d, they have
geometrically similar field distributions that map onto the

same dimensionless field Ũ�r̃�. This scaling is evident in the

increase in the threshold voltage for ionization for tips that
have increased their size due to field evaporation.

The classical equations of motion for the trajectory of an
atom in this potential field can be similarly nondimensional-
ized using the tip length scale d and a time scale 

=�md2 /kBT generated from the thermal energy scale, where
m is the atom mass, kB is Boltzmann’s constant, and T is the
gas temperature. Thus in the problem of two tips of the same
shape but of different size, both the potential function and
the equations of motion can be scaled to the same dimen-
sionless problem. The family of solutions to the equations of
motion, corresponding to different initial conditions, are
therefore geometrically similar for two geometrically similar
tips with the same ratio V0 /d. The scaling of the I-V curves
onto a single curve for tips undergoing successive evapora-
tion is consistent with this geometric scaling and indicates
that the predominant effect of the field evaporation is to in-
crease the radius at the end of the tip.

The flux of neutral atoms delivered to the tip can be
expressed in terms of a phase space distribution function
f�r ,v�, and the current I delivered to the surface can be cal-
culated by integrating this flux over the surface.

I = �
S

dS� d3vf�r,v�n̂ · v , �6�

where S is as defined above and n̂ is a unit vector pointing
outward from the surface S at the location rs. For the diffuse
gas experiments, the background pressure is low enough that
the atoms are accelerated toward the tip in the absence of
collisions with other atoms. In this case, the phase space
distribution function f on the surface S can be simply related
to the Maxwell–Boltzmann distribution function f0 of the
background gas via Liouville’s theorem,

f�rs,vs� = f0�v0� = f0�vs − �v� , �7�

with �v	vs−v0 the change between the far-field velocity v0

and the velocity vs on the surface S. For a field sufficient to
ionize helium, the energy of the atoms as they strike the tip is
on the order of 1 eV. The integral in Eq. �6� can be approxi-
mated under the assumption that the atoms pick up most of
their final energy in the region of high field very near the tip,
and that therefore the atoms pass through S nearly normally.
This approximation decouples the velocity and the surface
integrals in Eq. �6�, and yields

I � Ithermal + n0v fS�d,V� , �8�

where the function S�d ,V� represents the area of a surface at
a constant electric field magnitude outside a tip of size d and
at voltage V, Ithermal is the current to the surface S that would
be present without the field, n0 is the background gas density,
and v f is the atom speed at the surface S.

This simple model for the flux delivered to the tip pro-
vides an explanation for the variation in the current with
voltage at constant size and at constant surface field, and
why the exponent � is less than the exponent �. Above the
knee the second term in Eq. �8� is much greater than the first
term since the final velocity at the tip is much greater than
the average thermal velocity. To good approximation the fi-

FIG. 6. �Color online� Measured ion count rate �a� with the FI tip in the
direct beam, �b� with the beam blocked just before the detector, and �c� the
difference giving the direct beam signal only.
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nal velocity is, via conservation of energy, proportional to
the surface field, whereas the surface area S�d ,V� is propor-
tional to the area d2. To investigate how the area function
S�d ,V� depends on voltage we have calculated the field dis-
tribution for a tip in the shape of a prolate spheroid, for
which an analytic result can be simply derived. From this
field distribution we calculated S�d ,V� over a range of oper-
ating voltages and found S�d ,V� to vary approximately as a
power law in the surface field. With the assumption that the
area function for our experimental tips similarly scale as
S�d ,V��d2�V /d��, for some exponent �, the additional flux
to the surface scales as

v fS�d,V� �
V

d
d2�V/d�� = d1−�V1+�. �9�

Relation �9� predicts that for tips held at constant size, the
dominant current n0v fS in Eq. �8� varies as voltage to the
exponent �=1+�, and for tips of different size at the same
value of V /d, the current varies as voltage to the exponent
�=2. The surface area calculations for the prolate spheroidal
tips predict a range of values for the exponent � from two to
ten depending on the ellipticity of the spheroid, with our
value ��4.5 consistent with a needlelike shaped tip. How-
ever, our actual tip shapes are not spheroidal, and a further
comparison with that shape model would not be useful.

We measure a range of values for the exponent �, con-
sistently larger than two, the value predicted by our flux
model for tips of the same shape but different size. A larger
value for � would be consistent with certain changes in
shape as well as size during field evaporation, as in evident
in Fig. 4. If one compares a tip with a radius of curvature R
and a sphere with the same radius, it is well known that more
voltage per unit radius is required to achieve the same sur-
face field at the end of the tip as for the sphere.10 This factor
can be simply calculated given a model for the tip shape; for
tips in the shape of prolate spheroids, the factor increases
sharply as the shape progresses from nearly spherical to
more needlelike. Beta values larger than two are consistent
with the flux model if field evaporation increases the voltage
per unit radius needed to achieve a fixed field. The scatter in
the measured � values can be explained by variations in the
rate of change in the critical voltage per unit radius with the
shape changes induced by field evaporation.

V. DISCUSSION

Field evaporation produces tips whose I-V characteris-
tics are similar in shape and obey simple scaling consistent
with the geometric scaling model of Sec. IV. For each tip
examined, ion current increased as V� above the knee voltage
and as V� for successive evaporation. No such scaling was
found when comparing tips prepared from different tungsten
wires. It is likely that chemical etching produces a different
evolution of tip shape than does field evaporation. In all
cases ��; ion current increases more rapidly with voltage
at constant tip size than compared to that at constant surface
field. This implies that at any voltage greater than the knee
voltage, more ions are made by a small FI tip than by a large
FI tip. Therefore, in applications where the largest possible

capture region is desired, a small tip operating well above the
knee of the I-V curve is strongly desired. By contrast, if a
small capture region is desired, operating near the knee be-
tween regions I and II is desired.

In our current coherent atom beam measurements,8 the
ion current for the tips in the helium beam is disappointingly
small, implying a smaller than desired detection area. The
ideal detection area for dynamic atom scattering of order
1 �m2 is three orders of magnitude larger than the ioniza-
tion cross section reported here as derived from the ion cur-
rent in Sec. III A. The majority of this deficit may be met by
working at higher voltage or using a gas that is more easily
polarized and ionized. Finding a tip material with a higher
evaporation field would also be useful to exploit the relative
steepness, �, of the I-V curves compared to �. For atom
beam microscopy a two dimensional array of such detectors
would be ideal but requires considerable development from
the current state of the art.
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