2,984 research outputs found
LOX/hydrocarbon auxiliary propulsion system study
Liquid oxygen (LOX)/hydrocarbon propulsion concepts for a "second generation' orbiter auxiliary propulsion system was evaluated. The most attractive fuel and system design approach identified, and the technology advancements that are needed to provide high confidence for a subsequent system development were determined. The fuel candidates were ethanol, methane, propane, and ammonia. Even though ammonia is not a hydrocarbon, it was included for evaluation because it is clean burning and has a good technology base. The major system design options were pump versus pressure feed, cryogenic versus ambient temperature RCS propellant feed, and the degree of OMS-RCS integration. Ethanol was determined to be the best fuel candidate. It is an earth-storable fuel with a vapor pressure slightly higher than monomethyl hydrazine. A pump-fed OMS was recommended because of its high specific impulse, enabling greater velocity change and greater payload capability than a pressure fed system
Evaluation by simulation of interpolation and acceleration algorithms for Stepper Motors
Stepper motors are used to control CNC machines for many applications. As well as following the required path precisely, it is also important that the motion be smooth and that the surface speed be controllable. Improved interpolation algorithms for individual straight lines and circular arcs have been developed using distance as a parameter [Chow et al, 2002], [Chow, 2003]. The algorithms control the motor by means of pulses and the generation of the pulse timings is based on the geometry of the shape. For high speeds it is necessary to allow smooth acceleration at the beginning and similar smooth deceleration at the end. Thus, appropriate acceleration and deceleration algorithms have been developed for use with the new interpolation algorithms. This paper describes how simulation has been used to evaluate the new algorithms and compare them with previous algorithms. The algorithms are described for the 2D case but the principle can be extended to 3D
In-work poverty in the East Midlands
Research that explores the nature and scale of in-work poverty in the East Midlands, using several established measures
A structured approach for the engineering of biochemical network models, illustrated for signalling pathways
http://dx.doi.org/10.1093/bib/bbn026Quantitative models of biochemical networks (signal transduction cascades, metabolic pathways, gene regulatory circuits) are a central component of modern systems biology. Building and managing these complex models is a major challenge that can benefit from the application of formal methods adopted from theoretical computing science. Here we provide a general introduction to the field of formal modelling, which emphasizes the intuitive biochemical basis of the modelling process, but is also accessible for an audience with a background in computing science and/or model engineering. We show how signal transduction cascades can be modelled in a modular fashion, using both a qualitative approach { Qualitative Petri nets, and quantitative approaches { Continuous Petri Nets and Ordinary Differential Equations. We review the major elementary building blocks of a cellular signalling model, discuss which critical design decisions have to be made during model building, and present ..
Far infrared and submillimeter brightness temperatures of the giant planets
The brightness temperatures of Jupiter, Saturn, Uranus, and Neptune in the range 35 to 1000 micron. The effective temperatures derived from the measurements, supplemented by shorter wavelength Voyager data for Jupiter and Saturn, are 126.8 + or - 4.5 K, 93.4 + or - 3.3 K, 58.3 + or - 2.0 K, and 60.3 + or - 2.0 K, respectively. The implications of the measurements for bolometric output and for atmospheric structure and composition are discussed. The temperature spectrum of Jupiter shows a strong peak at approx. 350 microns followed by a deep valley at approx. 450 to 500 microns. Spectra derived from model atmospheres qualitatively reproduced these features but do not fit the data closely
Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale
Soil organic carbon (SOC) plays a major role in the global carbon budget. It
can act as a source or a sink of atmospheric carbon, thereby possibly
influencing the course of climate change. Improving the tools that model the
spatial distributions of SOC stocks at national scales is a priority, both for
monitoring changes in SOC and as an input for global carbon cycles studies. In
this paper, we compare and evaluate two recent and promising modelling
approaches. First, we considered several increasingly complex boosted
regression trees (BRT), a convenient and efficient multiple regression model
from the statistical learning field. Further, we considered a robust
geostatistical approach coupled to the BRT models. Testing the different
approaches was performed on the dataset from the French Soil Monitoring
Network, with a consistent cross-validation procedure. We showed that when a
limited number of predictors were included in the BRT model, the standalone BRT
predictions were significantly improved by robust geostatistical modelling of
the residuals. However, when data for several SOC drivers were included, the
standalone BRT model predictions were not significantly improved by
geostatistical modelling. Therefore, in this latter situation, the BRT
predictions might be considered adequate without the need for geostatistical
modelling, provided that i) care is exercised in model fitting and validating,
and ii) the dataset does not allow for modelling of local spatial
autocorrelations, as is the case for many national systematic sampling schemes
Impact of comet Shoemaker-Levy 9 on Jupiter
Three-dimensional numerical simulations of the impact of Comet Shoemaker-Levy 9 on Jupiter and the resulting vapor plume expansion were conducted using the Smoothed Particle Hydrodynamics (SPH) method. An icy body with a diameter of 2 km can penetrate to an altitude of -350 km (0 km = 1 bar) and most of the incident kinetic energy is transferred to the atmosphere between -100 km to -250 km. This energy is converted to potential energy of the resulting gas plume. The unconfined plume expands vertically and has a peak radiative power approximately equal to the total radiation from Jupiter's disc. The plume rises a few tens of atmospheric scale heights in ∼10² seconds. The rising plume reaches the altitude of ∼3000 km, but no atmospheric gas is accelerated to the escape velocity (∼60 km/s)
Calibration of the Herschel SPIRE Fourier Transform Spectrometer
The Herschel SPIRE instrument consists of an imaging photometric camera and
an imaging Fourier Transform Spectrometer (FTS), both operating over a
frequency range of 450-1550 GHz. In this paper, we briefly review the FTS
design, operation, and data reduction, and describe in detail the approach
taken to relative calibration (removal of instrument signatures) and absolute
calibration against standard astronomical sources. The calibration scheme
assumes a spatially extended source and uses the Herschel telescope as primary
calibrator. Conversion from extended to point-source calibration is carried out
using observations of the planet Uranus. The model of the telescope emission is
shown to be accurate to within 6% and repeatable to better than 0.06% and, by
comparison with models of Mars and Neptune, the Uranus model is shown to be
accurate to within 3%. Multiple observations of a number of point-like sources
show that the repeatability of the calibration is better than 1%, if the
effects of the satellite absolute pointing error (APE) are corrected. The
satellite APE leads to a decrement in the derived flux, which can be up to ~10%
(1 sigma) at the high-frequency end of the SPIRE range in the first part of the
mission, and ~4% after Herschel operational day 1011. The lower frequency range
of the SPIRE band is unaffected by this pointing error due to the larger beam
size. Overall, for well-pointed, point-like sources, the absolute flux
calibration is better than 6%, and for extended sources where mapping is
required it is better than 7%.Comment: 20 pages, 18 figures, accepted for publication in MNRA
Two-year observations of the Jupiter polar regions by JIRAM on board Juno
We observed the evolution of Jupiter's polar cyclonic structures over two years between February 2017 and February 2019, using polar observations by the Jovian InfraRed Auroral Mapper, JIRAM, on the Juno mission. Images and spectra were collected by the instrument in the 5‐μm wavelength range. The images were used to monitor the development of the cyclonic and anticyclonic structures at latitudes higher than 80° both in the northern and the southern hemispheres. Spectroscopic measurements were then used to monitor the abundances of the minor atmospheric constituents water vapor, ammonia, phosphine and germane in the polar regions, where the atmospheric optical depth is less than 1. Finally, we performed a comparative analysis with oceanic cyclones on Earth in an attempt to explain the spectral characteristics of the cyclonic structures we observe in Jupiter's polar atmosphere
EVOLUTION OF THE STRATOSPHERIC TEMPERATURE AND CHEMICAL COMPOSITION OVER ONE TITANIAN YEAR
Since the Voyager 1 (V1) flyby in 1980, Titans exploration from space and the ground has been ongoing for more than a full revolution of Saturn around the Sun (one Titan year or 29.5 Earth years was completed in May 2010). In this study we search for temporal variations affecting Titans atmospheric thermal and chemical structure within that year. We process Cassini CIRS data taken during the Titan flybys from 2006-2013 and compare them to the 1980 V1IRIS spectra (re-analyzed here). We also consider data from Earth-based and -orbiting observatories (such as from the ISO, re-visited). When we compare the CIRS 2010 and the IRIS data we find limited inter-annual variations, below the 25 or35 levels for the lower and middle, or the high latitudes, respectively. A return to the 1980 stratospheric temperatures and abundances is generally achieved from 50degN to 50degS, indicative of the solar radiation being the dominating energy source at 10 AU, as for the Earth, as predicted by GCM and photochemical models. However, some exceptions exist among the most complex hydrocarbons (C4H2 and C3H4), especially in the North. In the Southern latitudes, since 2012, we see a trend for an increase of several trace gases, possibly indicative of a seasonal atmospheric reversal. At the Northern latitudes we found enhanced abundances around the period of the northern spring equinox in mid-2009 (as in Bampasidis et al. 2012), which subsequently decreased (from 2010-2012) returning to values similar to those found in the V1 epoch a Titanian year before
- …
