14 research outputs found
Cattle sera data for the manuscript 'Seroprevalence of foot-and-mouth disease virus in cattle herds raised in Maasai Mara ecosystem in Kenya'
This data was collected in the Maasai Mara National Reserve in Kenya. A total of 1,170 cattle were sampled and screened for antibodies against foot-and-mouth disease (FMD). A metafile describing the data is attached
Cattle sera data for the manuscript 'Seroprevalence of foot-and-mouth disease virus in cattle herds raised in Maasai Mara ecosystem in Kenya'
This data was collected in the Maasai Mara National Reserve in Kenya. A total of 1,170 cattle were sampled and screened for antibodies against foot-and-mouth disease (FMD). A metafile describing the data is attached.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
Zoonotic pathogen seroprevalence in cattle in a wildlife–livestock interface, Kenya
A cross-sectional study was conducted to determine the seroprevalence of Brucella spp. and Leptospira spp. and risk factors of exposure in cattle in three zones with varying land use types and wildlife–livestock interactions. Five villages were selected purposively; two in areas with intensive livestock–wildlife interactions (zone 1), another two in areas with moderate livestock–wildlife interactions (zone 2) and one in areas where wildlife–livestock interactions are rarer (zone 3). Sera samples were collected from 1170 cattle belonging to 390 herds in all the zones and tested for antibodies against Brucella abortus and Leptospira interrogans serovar hardjo using ELISA kits. Data on putative risk factors for seropositivity of these pathogens in cattle were collected using a questionnaire. The overall apparent animal-level seroprevalence of brucellosis and leptospirosis was, respectively, 36.9% (95% CI 34.1–39.8) and 23.5% (95% CI 21.1–26.0). Brucella spp. seroprevalence was higher in zone 1 than in zones 2 and 3 (χ2 = 25.1, df = 2, P < 0.001). Zones 1 and 2 had significantly higher Leptospira spp. seroprevalence than zone 3 (χ2 = 7.0, df = 2, P = 0.029). Results of multivariable analyses identified animal sex (female) and zones (high interface area) as significant predictors (P < 0.05) of animal-level seropositivity of Brucella spp. For Leptospira spp., important predictors of animal-level seropositivity were animal sex (female), zones (moderate interface area) and herds utilizing a communal grazing reserve. The seroprevalences of Brucella spp. and Leptospira spp. in cattle were higher in areas with moderate to high wildlife–livestock interactions than those with rare interactions
Brucella seroprevalence in cattle near a wildlife reserve in Kenya
Objectives Brucellosis is caused by bacteria from the genus Brucella which infect human and domestic animals as well as wildlife. The Maasai Mara National Reserve has vast populations of wild ruminants such as buffaloes and wildebeest which could contribute to the risk of brucellosis in livestock, and the surrounding pastoralist communities grazing cattle in and around the reserve may be exposed to a higher risk of zoonotic diseases like brucellosis due to the close contact with livestock. In this study, cattle from three villages at varying distance from the reserve, were screened for antibodies against Brucella abortus. Results In total, 12.44% of 225 sampled animals were seropositive, with more females (15%) infected than males (5%). Seroprevalence was higher in livestock closer to Maasai Mara with the cattle in the village Mara Rianta having an odds ratio of 7.03 compared to Endoinyo Narasha further away (95% CI 1.4–11.1, p = 0.003), suggesting that a closer contact with wildlife may increase the circulation of infectious diseases between livestock and wildlife. Symptoms consistent with brucellosis were reported to occur in both humans and animals, and we thus conclude that brucellosis may be an important problem, both for the health and the economy
Seroprevalence of foot-and-mouth disease virus in cattle herds raised in Maasai Mara ecosystem in Kenya
A cross-sectional study was carried out to determine foot-and-mouth disease (FMD) seroprevalence and identify risk factors of exposure among cattle herds raised in three zones with different types of land use and progressively distant from the Maasai Mara National Reserve (MMNR) boundary. We selected five villages purposively; two in zone 1 (area 40 km away from the MMNR). A total of 1,170 cattle sera were collected from 390 herds in all the zones and tested for antibodies against the non-structural proteins (NSPs) of FMD virus (FMDV) using two 3ABC-based Enzyme-Linked Immunosorbent Assay (ELISA) kits. All sera samples were also screened for serotype-specific antibodies using Solid Phase Competitive ELISA (SPCE) kits (IZSLER, Italy). We targeted FMDV serotypes A, O, South African Territory [SAT] 1 and SAT 2, known to be endemic in East Africa including Kenya. Data on putative risk factors for FMD seropositivity in cattle were collected using a questionnaire. The overall apparent animal-level FMD seroprevalence based on the parallel comparison of the two anti-NSPs ELISA kits was 83.8% (95% CI; 81.8–85.9), and differed significantly across zones. Zone 1 had a higher seroprevalence than zones 2 and 3 (χ2 = 116.1, df = 2, p < 0.001). In decreasing order, the overall seroprevalences of FMDV serotypes A, SAT 2, O and SAT 1 were 26.3% (95% CI; 23.5-29.2), 21.4% (95% CI; 18.8-24.0), 21.2% (95% CI; 18.7-23.9) and 13.1% (95% CI; 11.1-15.3), respectively. The distribution of these serotypes differed significantly between zones (p < 0.05) except for SAT 2 serotype (χ2 = 0.90, df = 2, p = 0.639). Both serotypes A and O were more prevalent in zones 1 and 2 than zone 3 while serotype SAT 1, was higher in zone 3 compared to other zones. The results of multivariable analyses identified animal sex (i.e., female), raising of cattle in zones 1 and 2 (areas < 40 km away from the MMNR); mixing of cattle from multiple herds at watering points, and pastoral husbandry practices, as significant predictors of animal-level FMD seropositivity. This study established that FMD seroprevalence declined with distance from the MMNR
Seroprevalence and related risk factors of Brucella spp. in livestock and humans in Garbatula subcounty, Isiolo county, Kenya
Background
Brucellosis is a neglected zoonotic disease that affects both animals and humans, causing debilitating illness in humans and socio-economic losses in livestock-keeping households globally. The disease is endemic in many developing countries, including Kenya, but measures to prevent and control the disease are often inadequate among high-risk populations. This study aimed to investigate the human and livestock seroprevalence of brucellosis and associated risk factors of Brucella spp. in a pastoralist region of northern Kenya.
Methods
A cross-sectional survey was conducted using a two-stage cluster sampling method to select households, livestock, and humans for sampling. Blood samples were collected from 683 humans and 2157 animals, and Brucella immunoglobulin G (IgG) antibodies were detected using enzyme-linked immunosorbent assays. A structured questionnaire was used to collect data on potential risk factors associated with human and animal exposures. Risk factors associated with Brucella spp. exposures in humans and livestock were identified using Multivariate logistic regression.
Results
The results indicated an overall livestock Brucella spp. seroprevalence of 10.4% (95% Confidence Interval (CI): 9.2–11.7). Camels had the highest exposure rates at 19.6% (95% CI: 12.4–27.3), followed by cattle at 13.2% (95% CI: 9.3–17.1), goats at 13.1% (95% CI: 11.1–15.3) and sheep at 5.4% (95% CI: 4.0–6.9). The herd-level seroprevalence was 51.7% (95% CI, 47.9–55.7). Adult animals (Adjusted Odds Ratio (aOR) = 2.3, CI = 1.3–4.0), female animals (aOR = 1.7, CI: 1.1–2.6), and large herd sizes (aOR = 2.3, CI = 1.3–4.0) were significantly associated with anti-brucella antibody detection while sheep had significantly lower odds of Brucella spp. exposure compared to cattle (aOR = 1.3, CI = 0.8–2.1) and camels (aOR = 2.4, CI = 1.2–4.8). Human individual and household seroprevalences were 54.0% (95 CI, 50.2–58.0) and 86.4% (84.0–89.0), respectively. Significant risk factors associated with human seropositivity included being male (aOR = 2.1, CI:1.3–3.2), residing in Sericho ward (aOR = 1.6, CI:1.1–2.5) and having no formal education (aOR = 3.0, CI:1.5–5.9). There was a strong correlation between human seropositivity and herd exposure (aOR = 1.6, CI:1.2–2.3).
Conclusions
The study provides evidence of high human and livestock exposures to Brucella spp. and identifies important risk factors associated with disease spread. These findings emphasize the need for targeted prevention and control measures to curb the spread of brucellosis and implement a One Health surveillance to ensure early detection of the disease in Isiolo County, Northern Kenya
Seroprevalence of Brucella spp. and Rift Valley fever virus among slaughterhouse workers in Isiolo County, northern Kenya
Brucella spp. and Rift Valley fever virus (RVFV) are classified as priority zoonotic agents in Kenya, based on their public health and socioeconomic impact on the country. Data on the pathogen-specific and co-exposure levels is scarce due to limited active surveillance. This study investigated seroprevalence and co-exposure of Brucella spp. and RVFV and associated risk factors among slaughterhouse workers in Isiolo County, northern Kenya. A cross-sectional serosurvey was done in all 19 slaughterhouses in Isiolo County, enrolling 378 participants into the study. The overall seroprevalences for Brucella spp. and RVFV were 40.2% (95% CI: 35.2–45.4) and 18.3% (95% CI: 14.5–22.5), respectively while 10.3% (95% CI 7.4%-13.8%) of individuals were positive for antibodies against both Brucella spp. and RVFV. Virus neutralisation tests (VNT) confirmed anti-RVFV antibodies in 85% of ELISA-positive samples. Our seroprevalence results were comparable to community-level seroprevalences previously reported in the area. Since most of the study participants were not from livestock-keeping households, our findings attribute most of the detected infections to occupational exposure. The high exposure levels indicate slaughterhouse workers are the most at-risk population and there is need for infection, prevention, and control programs among this high-risk group. This is the first VNT confirmation of virus-neutralising antibodies among slaughterhouse workers in Isiolo County and corroborates reports of the area being a high-risk RVFV area as occasioned by previously reported outbreaks. This necessitates sensitization campaigns to enhance awareness of the risks involved and appropriate mitigation measures
Sero-epidemiological survey of Coxiella burnetii in livestock and humans in Tana River and Garissa counties in Kenya
Background: Coxiella burnetii is a widely distributed pathogen, but data on its epidemiology in livestock, and human populations remains scanty, especially in developing countries such as Kenya. We used the One Health approach to estimate the seroprevalance of C. burnetii in cattle, sheep, goats and human populations in Tana River county, and in humans in Garissa county, Kenya. We also identified potential determinants of exposure among these hosts.
Methods: Data were collected through a cross-sectional study with a cluster sampling design. Serum samples were taken from 2,727 animals (466 cattle, 1,333 goats, and 928 sheep) and 974 humans and screened for Phase I/II IgG antibodies against C. burnetii using enzyme-linked immunosorbent assay (ELISA). Data on potential factors associated with animal and human exposure were collected using a structured questionnaire. Multivariable analyses were performed with households as random effects to adjust for the within-household correlation of C. burnetii exposure among animals and humans, respectively.
Results: The overall apparent seroprevalence estimates of C. burnetii in livestock and humans were 12.80% (95% confidence interval [CI]: 11.57-14.11) and 24.44% (95% CI: 21.77-27.26), respectively. In livestock, the seroprevalence differed significantly by species (p < 0.01). The highest seroprevalence estimates were observed in goats 15.22% (95% CI: 13.34-17.27), then sheep 14.22% (95% CI: 12.04-16.64) and with cattle 3.00% (95% CI; 1.65-4.99) showing lower values. Herd-level seropositivity of C. burnetii in livestock was not positively associated with human exposure. Multivariable results showed that female animals had higher odds of seropositivity for C. burnetii than males, while for animal age groups, adult animals had higher odds of seropositivity than calves, kids or lambs. For livestock species, both sheep and goats had significantly higher odds of seropositivity than cattle. In human populations, men had a significantly higher odds of testing positive for C. burnetii than women.
Conclusions: This study provides evidence of livestock and human exposure to C. burnetii which could have serious economic implications on livestock production and impact on human health. These results also highlight the need to establish active surveillance in the study area to reduce the disease burden associated with this pathogen
Molecular epidemiology of Brucella species in mixed livestock-human ecosystems in Kenya
Brucellosis, caused by several species of the genus Brucella, is a zoonotic disease that affects humans and animal species worldwide. Information on the Brucella species circulating in different hosts in Kenya is largely unknown, thus limiting the adoption of targeted control strategies. This study was conducted in multi-host livestock populations in Kenya to detect the circulating Brucella species and assess evidence of host–pathogen associations. Serum samples were collected from 228 cattle, 162 goats, 158 sheep, 49 camels, and 257 humans from Narok and Marsabit counties in Kenya. Information on age, location and history of abortion or retained placenta were obtained for sampled livestock. Data on age, gender and location of residence were also collected for human participants. All samples were tested using genus level real-time PCR assays with primers specific for IS711 and bcsp31 targets for the detection of Brucella. All genus positive samples (positive for both targets) were further tested with a speciation assay for AlkB and BMEI1162 targets, specific for B. abortus and B. melitensis, respectively. Samples with adequate quantities aggregating to 577 were also tested with the Rose Bengal Test (RBT). A total of 199 (33.3%) livestock and 99 (38.5%) human samples tested positive for genus Brucella. Animal Brucella PCR positive status was positively predicted by RBT positive results (OR = 8.3, 95% CI 4.0–17.1). Humans aged 21–40 years had higher odds (OR = 2.8, 95% CI 1.2–6.6) of being Brucella PCR positive compared to the other age categories. The data on detection of different Brucella species indicates that B. abortus was detected more often in cattle (OR = 2.3, 95% CI 1.1–4.6) and camels (OR = 2.9, 95% CI 1.3–6.3), while B. melitensis was detected more in sheep (OR = 3.6, 95% CI 2.0–6.7) and goats (OR = 1.7, 95% CI 1.0–3.1). Both B. abortus and B. melitensis DNA were detected in humans and in multiple livestock host species, suggesting cross-transmission of these species among the different hosts. The detection of these two zoonotic Brucella species in humans further underpins the importance of One Health prevention strategies that target multiple host species, especially in the multi-host livestock populations