54,676 research outputs found
Euclidean Thermal Green Functions of Photons in Generalized Euclidean Rindler Spaces for any Feynman-like Gauge
The thermal Euclidean Green functions for Photons propagating in the Rindler
wedge are computed employing an Euclidean approach within any covariant
Feynman-like gauge. This is done by generalizing a formula which holds in the
Minkowskian case. The coincidence of the found (\be=2\pi)-Green functions and
the corresponding Minkowskian vacuum Green functions is discussed in relation
to the remaining static gauge ambiguity already found in previous papers.
Further generalizations to more complicated manifolds are discussed. Ward
identities are verified in the general case.Comment: 12 pages, standard latex, no figures, some signs changed, more
comments added, final version to appear on Int. J. Mod. Phys.
Plasmas generated by ultra-violet light rather than electron impact
We analyze, in both plane and cylindrical geometries, a collisionless plasma
consisting of an inner region where generation occurs by UV illumination, and
an un-illuminated outer region with no generation. Ions generated in the inner
region flow outwards through the outer region and into a wall. We solve for
this system's steady state, first in the quasi-neutral regime (where the Debye
length vanishes and analytic solutions exist) and then in the
general case, which we solve numerically. In the general case a double layer
forms where the illuminated and un-illuminated regions meet, and an
approximately quasi-neutral plasma connects the double layer to the wall
sheath; in plane geometry the ions coast through the quasi-neutral section at
slightly more than the Bohm speed . The system, although simple, therefore
has two novel features: a double layer that does not require counter-streaming
ions and electrons, and a quasi-neutral plasma where ions travel in straight
lines with at least the Bohm speed. We close with a pr\'{e}cis of our
asymptotic solutions of this system, and suggest how our theoretical
conclusions might be extended and tested in the laboratory.Comment: 10 pages, 3 figures, accepted by Physics of Plasma
Thermomechanical characterization of Hastelloy-X under uniaxial cyclic loading
In most high-temperature engineering applications, components are subjected to complex combinations of thermal and mechanical loading during service. A number of viscoplastic constitutive models were proposed which potentially can provide mathematical descriptions of material response under such conditions. Implementation of these models into large finite element codes such as MARC has already resulted in much improved inelastic analysis capability for hot-section aircraft engine components. However, a number of questions remain regarding the validity of methods adopted in characterizing these constitutive models for particular high-temperature materials. One area of concern is that the majority of experimental data available for this purpose are determined under isothermal conditions. This is in contrast to service conditions which, as noted above, almost always involve some form of thermal cycling. The obvious question arises as to whether a constitutive model characterized using an isothermal data base can adequately predict material response under thermomechanical conditions. An experimental program was initiated within the HOST program to address this particular concern. The results of the most recent isothermal and thermomechanical experiments are described
Small-q electron-phonon scattering and linear dc resistivity in high-T_c oxides
We examine the effect on the DC resistivity of small-q electron-phonon
scattering, in a system with the electronic topology of the high-T_c oxides.
Despite the fact that the scattering is dominantly forward, its contribution to
the transport can be significant due to ``ondulations'' of the bands in the
flat region and to the umpklapp process. When the extended van-Hove
singularities are sufficiently close to the acoustic branch of the
phonons contribute significantly to the transport. In that case one can obtain
linear dependent resistivity down to temperatures as low as 10 K, even if
electrons are scattered also by optical phonons of about 500 K as reported by
Raman measurements.Comment: LATEX file and 4 Postscript figure
Long-range sound-mediated dark soliton interactions in trapped atomic condensates
A long-range soliton interaction is discussed whereby two or more dark
solitons interact in an inhomogeneous atomic condensate, modifying their
respective dynamics via the exchange of sound waves without ever coming into
direct contact. An idealized double well geometry is shown to yield perfect
energy transfer and complete periodic identity reversal of the two solitons.
Two experimentally relevant geometries are analyzed which should enable the
observation of this long-range interaction
Optical Conductivity in a Two-Band Superconductor: Pb
We demonstrate the effect of bandstructure on the superconducting properties
of Pb by calculating the strong-coupling features in the optical conductivity,
, due to the electron-phonon interaction. The importance of
momentum dependence in the calculation of the properties of superconductors has
previously been raised for MgB. Pb resembles MgB in that it is a two
band superconductor in which the bands' contributions to the Fermi surface have
very different topologies. We calculate by calculating a
memory function which has been recently used to analyze of
BiSrCaCuO. In our calculations the two components of
the Fermi surface are described by parameterizations of de Haas--van Alphen
data. We use a phonon spectrum which is a fit to neutron scattering data. By
including the momentum dependence of the Fermi surface good agreement is found
with the experimentally determined strong-coupling features which can be
described by a broad peak at around 4.5 meV and a narrower higher peak around 8
meV of equal height. The calculated features are found to be dominated by
scattering between states within the third band. By contrast scattering between
states in the second band leads to strong-coupling features in which the height
of the high energy peak is reduced by compared to that of the low
energy peak. This result is similar to that in the conventional isotropic
(momentum independent) treatment of superconductivity. Our results show that it
is important to use realistic models of the bandstructure and phonons, and to
avoid using momentum averaged quantities, in calculations in order to get
quantitatively accurate results
Measuring two-photon orbital angular momentum entanglement
We put forward an approach to estimate the amount of bipartite spatial
entanglement of down-converted photon states correlated in orbital angular
momentum and the magnitude of the transverse (radial) wave vectors. Both
degrees of freedom are properly considered in our framework, which only
requires azimuthal local linear optical transformations and mode selection
analysis with two fiber detectors. The coincidence distributions predicted by
our approach give an excellent fit to the distributions measured in a recent
experiment aimed to show the very high-dimensional transverse entanglement of
twin photons from a down-conversion source. Our estimate for the Schmidt number
is substantially lower but still confirms the presence of high-dimensional
entanglement.Comment: Extended paper of a published version in PRA, with some extra
appendice
- …
