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We put forward an approach to estimate the amount of bipartite spatial entanglement of down-converted
photon states correlated in orbital angular momentum and the magnitude of the transverse �radial� wave
vectors. Both degrees of freedom are properly considered in our framework, which only requires azimuthal
local linear optical transformations and mode selection analysis with two fiber detectors. The coincidence
distributions predicted by our approach give an excellent fit to the distributions measured in a recent experi-
ment aimed to show the very high-dimensional transverse entanglement of twin photons from a down-
conversion source. Our estimate for the Schmidt number is substantially lower but still confirms the presence
of high-dimensional entanglement.
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I. INTRODUCTION

The phenomenon of quantum entanglement whereby dis-
tant systems can manifest perfectly random albeit perfectly
correlated behavior is now recognized as the essential ingre-
dient in performing tasks which cannot be accomplished
with classically correlated systems �1�. The presence of en-
tanglement has been traditionally revealed in the violation of
Bell-type inequalities �2�. However, detecting such a viola-
tion does not provide in general a measure of the amount of
entanglement. This is particularly significant in systems cor-
related in multidimensional degrees of freedom �3�. Several
techniques have been proposed to assess the presence of en-
tanglement for different quantum scenarios. These include
state tomography �4–6�, which yields a complete reconstruc-
tion of a quantum state but requires many setting measure-
ments, entanglement witnesses �7�, which detect some en-
tangled states with considerably fewer measurements, and
the experimental determination of concurrence �8,9�. In Ref.
�9�, by using two copies of a down-converted two-photon
state entangled in polarization and transverse momentum, the
measurement of concurrence was achieved with a single, lo-
cal measurement on one of the photons.

Although bipartite entanglement is well understood, find-
ing experimentally feasible procedures to quantify it for sys-
tems correlated in multidimensional degrees of freedom
turns out to be quite challenging and relevant. Indeed, access
to higher-dimensional Hilbert spaces in which information
can be encoded and manipulated has recently attracted great
interest, with proof-of-principle demonstrations using quan-
tum communication protocols in three-level systems
�qutrits�, such as entanglement concentration �10�, quantum
bit commitment �11�, and quantum coin tossing �12�. Like-
wise, a complete characterization of states hyperentangled in
polarization, orbital angular momentum, and frequency has
been experimentally implemented �13�.

The aim of this paper is to address the problem of how, by
performing a certain set of local linear optical operations
affecting one of two multidimensional spatial degrees of
freedom in which two-photon states can be entangled, it is
possible to obtain an explicit measure of the amount of bi-
partite transverse entanglement. Specifically, according to the

interplay between both spatial degrees of freedom—orbital
angular momentum �OAM� and the magnitude of the radial
wave vectors—fundamentally different predictions are ex-
pected in the subsequent joint photodetection process, via
mode-selection analysis with two fiber detectors preceded by
azimuthal transformations �acting only on the OAM�. The
application of our framework is compared with the results of
a recent experiment �14�.

The paper is organized as follows. Section II presents the
general setting of the problem and includes the Schmidt de-
composition technique for describing bipartite spatial en-
tanglement. In Sec. III we reveal the generic features that
arise in the photodetection coincidences according to the
transverse structure of the two-photon wave function. Sec-
tion IV illustrates the results found in Sec. III with an ex-
ample of a realistic two-photon wave function that yields a
full analytical solution to the problem. In Sec. V a closed-
form expression for the Schmidt number is obtained in terms
of easily accessible experimental parameters. We then pro-
ceed to exploit this Schmidt number in two interesting ex-
amples of optical transformations with azimuthal phase
plates. These enable us to estimate the amount of spatial
entanglement of a two-photon source. Conclusions of the
paper are drawn in Sec. VI. Details of our calculations, to-
gether with some useful background material, have been in-
cluded in two appendixes.

II. MODAL SCHMIDT DECOMPOSITION FOR
TWO-PHOTON STATES

Two-photon pure quantum states are described in a Hil-
bert space by a continuous bilinear superposition of spa-
tiotemporal multimode states. Sources of such nonclassical
states of light are mostly realized in the process of spontane-
ous parametric down-conversion �15�, where an intense
quasimonochromatic laser pump illuminates a crystal en-
dowed with a quadratic nonlinearity producing pairs of pho-
tons �idler and signal�. Conservation of energy and momen-
tum impose that the state be spectrally and spatially
correlated. Here we explore entanglement involving spatial
degrees of freedom that depend on the transverse structure of
these states. For simplicity, we assume that the down-
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converted photons are linearly polarized, monochromatic,
and frequency degenerate. The two-photon state can then be
written as ���=�dqidqs��qi ,qs�â†�qi�â†�qs� �vac�, where qi,s

are the transverse components of the idler and signal wave
vectors. Under conditions of paraxial and nearly collinear
propagation of the pump, idler, and signal photons, the two-
photon amplitude � is given by �16� ��qi ,qs�=E�qi

+qs�G�qi−qs�. The function E represents the transverse pro-
file of the pump, whereas G originates from the phase-
matching condition in the longitudinal direction and depends
on the specific orientation and cut of the nonlinear crystal.
Since the arguments of E and G enforce correlations in dif-
ferent manifolds of the idler and signal wave vector space, it
is the global structure of � the one that dictates the entangle-
ment degree of ���.

In order to extract the amount of entanglement contained
in �, one may resort to the Schmidt decomposition, which
provides the spatial information modes of the two-photon
pair. Suppose that the transverse spatial frequency field of
the pump beam has a Gaussian profile of the form E�qi

+qs��e−w0
2�qi + qs�

2/4, where w0 is the width �at the beam
waist�. The chosen pump profile peaks when its argument
vanishes. This imposes that the idler and signal transverse
wave vectors should be mostly anticorrelated �qi�−qs�. Re-
markably, it was shown by Law and Eberly �17� that with
such a Gaussian profile E the normalized two-photon ampli-
tude can be expressed as

��qi,qs� = 	
�=−�

�

	
n=0

�

�− 1��
��nu�,n�qi�u−�,n�qs� , �1�

where u�,n�qi�=ei��iv�,n�qi� /
2� and u−�,n�qs�
=e−i��sv−�,n�qs� /
2� are the normalized polar Schmidt mode
functions for the idler and signal photons with topological
charge � and radial index n corresponding to eigenvalues ��n
�they satisfy 1���n�0 and 	�,n��n=1� of the reduced den-
sity matrices for each photon. Knowledge of ��n yields a
direct measure of the degree of transverse entanglement
given by the Schmidt number �18� K= �	�,n��n

2 �−1, which is
the reciprocal of the purity of the idler and signal density
matrices; it is invariant under free propagation and yields an
average of the number of relevant spatial modes involved in
the decomposition. The larger the value of K, the higher the
transverse entanglement. For instance, product states corre-
spond to K=1 �there is only one nonvanishing eigenvalue
equal to 1�, whereas states with K	1 are entangled. A dis-
tinguishing feature of decomposition �1� is that it represents
� in terms of a perfectly correlated discrete basis of paraxial
eigenstates of the OAM operator along the direction of light
propagation �with corresponding eigenvalues �
� �19,20�,
rather than in a continuous plane-wave modal expansion.
The precise form of the radial idler and signal eigenmodes
v�,n�qi� and v−�,n�qs� depends on the specific phase-matching
function G. In particular, when G is approximated by a con-
stant there are striking consequences: Eq. �1� becomes a
�non-normalizable� superposition in which all OAM eigen-
states have an equal weight and the radial dependence be-
comes just a global factor. It is important to emphasize that

to attain decomposition �1� the appropriate choice of the
widths wi and ws for the idler and signal radial eigenmodes,
has to be made. If the two-photon amplitude is of the form
��qi ,qs�=E�qi+qs�G�qi−qs�, then wi=ws�wS, where wS is
the so-called Schmidt width. For widths different from wS an
additional summation over the radial indices occurs, and the
perfect correlation between the idler and signal radial modes
is absent �see Appendix A�. Moreover, the fact that the idler
and signal mode functions are anticorrelated with respect to
their topological charge numbers is a consequence of a more
general process: the conservation of OAM, which is trans-
ferred from the pump photon �carrying zero OAM for a
Gaussian mode� to the down-converted photon pair �21�.

III. AZIMUTHAL TRANSFORMATIONS ON THE
TWO-PHOTON STATE

The usefulness of the Schmidt decomposition �1� be-
comes apparent when analyzing the propagation of two-
photon states through optical systems. Each of the interven-
ing modes evolves and transforms independently of the
others. It is also clear that the correlation properties dis-
played by the two-photon amplitude �1� are preserved
in the position representation. Therefore, suppose that the
idler and signal photon beams, described now by the
paraxial two-photon wave function in the transverse
position representation �20,22,23� ��ri ,rs�= �ri ,rs ���
=	�,n�−1��
��nu�,n�ri�u−�,n�rs�, are each transmitted through
different linear optical systems that include diffractive �or
refractive� azimuthal phase plates �see Fig. 1�. The role of
the plates in each path is to imprint an azimuth-dependent
phase factor on the incoming Schmidt modes. Their
�separate� action on the two-photon wave function can be
represented by the unitary and radially symmetric im-
pulse response functions h�i,s��� ,���. These functions locally
transform the spiral harmonic mode content of each
photon via ei�� /
2�→	��h��,�

�i,s�
ei��� /
2�, with h

��,�
�i,s�

=�0
2��0

2�d� d��ei��e−i����h�i,s��� ,��� /2�, so that the result-
ing output two-photon wave function is

�out�ri,rs� = 	
�i,�s,�,n

�− 1��
��nh�i,�
�i� h�s,−�

�s�

� ei�i�iv�,n�ri�ei�s�sv−�,n�rs�/2� , �2�

where the initial perfect correlation in OAMs is lost, only

FIG. 1. �Color online� Two-photon coincidence detection con-
figuration. Down-converted idler and signal beams from a nonlinear
crystal traverse two optical systems �h�i,s�� which include azimuthal
phase plates and are coupled into single-mode fibers �SMFs� gated
by a coincidence circuit �CC�.
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that corresponding to the radial modes remaining.
Upon traversing their respective linear optical systems the

idler and signal photons, having OAMs �i=�A, �s=�B, and
radial indices nA,B, are detected in coincidence. By placing
photodetectors at the output ports of suitable arrays of deter-
ministic mode sorter interferometers �24,25�, or computer-
generated holograms �10�, it is possible to distinguish modes
bearing different OAM. In practice, the most straightforward
procedure involves projecting into single-mode fibers, where
the propagated mode has a fundamental Gaussian profile
��A=�B=nA=nB=0�.

The probability that the idler and signal photons will be
projected into modes u�A,nA

and u�B,nB
is found to be P�A,�B

nA,nB

= ��dridrsu�A,nA

* �ri�u�B,nB

* �rs��out�ri ,rs��2, with an additional
incoherent �and weighted� sum over the radial indexes nA,B
when taking into account multimode detection. This photo-
dection probability is expressed in terms of the spatial over-
lap of the Schmidt and the fiber modes at the planes, where
the phase plates are located. Notice that their corresponding
widths, wS and wG, are not necessarily equal, and thus the
orthogonality between these modes when their radial indexes
differ does not hold in general. To evaluate P�A,�B

nA,nB, we define

R�
A,B�	n


��n�rirsdridrsv�A,nA

�wG� �ri�v�B,nB

�wG� �rs�v�,n
�wS��ri�v−�,n

�wS��rs�,
where the two different widths of the radial modes have been
specified for clarity. The coincidence probability can then be
written as

P�A,�B

nA,nB =  	
�=−�

�

�− 1��R�
A,Bh�A,�

�i� h�B,−�
�s� 2

. �3�

All the radial dependence is contained in the functions R�
A,B

that modulate the angular impulse response functions h�i,s�.
We emphasize that although the radial part of the Schmidt
modes does not experience any significant transformation
when the idler and signal beams traverse their respective
linear optical systems, its proper inclusion in the detection
process is essential. This is reflected in the structure of Eq.
�3� with the presence of �-dependent radial functions R�

A,B,
and is a consequence of a nonconstant phase-matching func-
tion G. Had G been a constant then the input two-photon
wave function �1� would have been represented by a com-
mon radial function times a �non-normalizable� maximally
entangled superposition of spiral harmonic modes. In this
limiting case one derives a fundamentally different prediction
for the coincidences: P�A,�B

� �	��−1��h�A,�
�i� h�B,−�

�s� �2, where
now all of the radial dependence of the detected modes ap-
pears only as a global function.

IV. AN EXACTLY SOLUBLE MODEL FOR THE
TWO-PHOTON AMPLITUDE

To illustrate the previous results, suppose that the phase-
matching function G is also Gaussian, an approximation im-
plying that photons are generated near the phase-matching
region of wave vectors where the down-conversion process
occurs most efficiently. The normalized two-photon ampli-
tude reads

��qi,qs� =
w0b

�
e−w0

2�qi + qs�
2/4e−b2�qi − qs�

2/4, �4�

where b�w0 plays the role of an effective width of the
phase-matching function, and depends on the nonlinear crys-
tal thickness, although no specific relation is assumed here.
At variance with other models, where G is often approxi-
mated by a constant �b→0�, the two-photon amplitude �4�
captures the relevant features of the transverse wave-vector
correlation between the idler and signal photons, and pro-
vides an analytically amenable model that yields explicit for-
mulas for Eq. �3�. We show in Appendix A that for the two-
photon amplitude �4�, the Schmidt mode functions belong to
the well-known Laguerre-Gaussian basis �17�, or, more gen-
erally, to a continuum family of spatial modes generated via
metaplectic mappings �rotations on the orbital Poincaré
sphere �26�� from the Laguerre-Gaussian modes �20,27�.
Furthermore, we also find that the Schmidt eigenvalues are
��n= �1−2�22���+4n, with = �w0−b� / �w0+b�. This allows us
to express the Schmidt number in the closed form K= ��1
+2� / �1−2��2. Large values of K occur when b→0. The
minimum K=1 is attained when b→w0 �the two-photon am-
plitude �4� becomes a separable function in the idler and
signal wave vectors�. The Schmidt width for any of the
above families of eigenmodes is always the same: wS

=
2w0b. We stress that the Schmidt width does not represent
the actual cross-section widths Wi,s of the idler and signal
beams. These widths, which can be measured experimen-
tally, can also be obtained by resorting to the partially re-
duced density matrix of the idler and signal photons. For the
amplitude �4� one finds Wi,s=
2w0

2+b2, which is consistent
with the widths employed in �28� in the thin-crystal approxi-
mation �b→0�.

Let us focus on the most usualy encountered situation
where the measured fiber modes are the fundamental Gauss-
ian modes �of width wG at the phase plates�. Since the in-
volved eigenfunctions in the Schmidt decomposition �1�
have cylindrical symmetry, we use the Laguerre-Gaussian
modes as the convenient computational basis to derive the
radial functions R��R�

�A,B=nA,B=0 �see Appendix B�. Re-
markably, it turns out that the functions R� can be cast in
terms of a sole parameter s

R��s� =
�2�1 + ���/2�

��1 + ����
F� ���

2
,
���
2

;1 + ���;s2�s���, �5�

where F�a ,b ;c ;d� denotes the hypergeometric function, and

s �
2

1 + 2 + �1 − 2��wS/wG�2 =
w0

2 − b2

w0
2 + b2 + �2w0b/wG�2 .

�6�

The parameter s corrects  by taking into account the spatial
overlapping of the Schmidt and the fiber modes. Indeed, if
and only if wS=wG, does s= hold. When b→0 then s→1,
which corresponds to a constant phase-matching function.
The functions R��s� increase monotonically from R��0�=0
to R��1�=1 for ��0 �R0�s�=1�. The fact that all R��s�
depend on a single parameter s will be exploited in the next
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section to show how one can estimate the Schmidt number in
a particular experimental scenario.

V. EXPERIMENTAL SCHMIDT NUMBER

Let us now examine the problem of measuring the amount
of transverse entanglement of two-photon sources which, in
our case, is characterized by the Schmidt number K. In prin-
ciple, a complete quantum tomography of the two-photon
state could yield the desired amount of entanglement �11�,
but generally this would require a very large number of mea-
surements, each for every possible pair of spatial modes, and
this is technically demanding. Here we propose an alterna-
tive approach. In our simple model for the two-photon am-
plitude �4� we have found that the radial part of the coinci-
dence probabilities �3� depends on a single parameter s. This
parameter s involves the characteristic widths appearing in
the two-photon amplitude �4�, namely, the pump beam width
w0 and the phase-matching width b, together with the fiber
mode width wG �at the phase plate locations�. The phase-
matching width b could be measured by scanning in the
plane of detection, but in our case it is not necessary. If,
instead, one rotates the azimuthal phase plates �maintaining
the detectors fixed�, then the recording of the coincidence
distributions allows one to extract the value of s as a fitting
parameter for Ps�P�A=0,�B=0

nA=0,nB=0 via Eqs. �3� and �5�. Therefore,
if s is conceived as a parameter to be directly measured
�rather than b�, the amount of transverse entanglement can
now be written in the form

K =
�1 + 2s�2�2

�1 − s��1 + s + 4s�2�
, �7�

where ��w0 /wG. This experimental Schmidt number de-
pends on quantities that are easily accessible: the fitting pa-
rameter s and the widths w0 and wG �the presence of the
width ratio � should be interpreted as a correcting geometri-
cal factor�. It increases from K=1, when s=0, to infinity as
s→1.

By properly engineering the impulse response functions
h�i,s� it is possible to enhance the sensitivity of Ps with s, thus
improving the accuracy of the estimated K. To this end, we
consider two simple types of transparent azimuthal phase
plates, and examine the dependence of Eq. �3� when the idler
and signal phase plates are mutually rotated a relative angle
���i−�s. Their dispersionless impulse response functions
are of the form h�i,s��� ,���=ei�i,s������−���. Owing to the
initial perfect anticorrelation in OAM of the down-converted
photon pairs, one expects that only when both photons are
subjected to complementary azimuthal transformations is the
perfect anticorrelation preserved and the coincidences maxi-
mal. As soon as the phase plates are rotated in such a way
that they are no longer oriented in a complementary arrange-
ment, the photon coincidences decrease. Notice that the axes
with respect to which the angles �i and �s are taken do not
coincide. For symmetric phase plates these reference axes
are inverted 180°. In what follows, we assume that each plate
is characterized by a noninteger parameter �= �n0−1�d /�,
where d is the relative step height introduced by the plates,

n0 their refractive index, and � the wavelength of the idler
and signal beams.

The first phase plate type we consider is an angular dia-
phragm �see inset in Fig. 2�a��. It consists of a thin uniform
dielectric circular slab with a “cake-slice” indentation that
subtends an angle �, with a nonzero �i���=−�s����2��
�mod 2�� only if �i,s+�����i,s+2�. Similar angular
diaphragms have been employed in proof-of-principle
demonstrations of the uncertainty relation for angular
position and OAM �29�. The probability �3�
can be cast as Ps

�AD����= �R0�s����−��2+�2 cot2�����
+8	�=1

� R��s�cos����sin2��� /2� /�2�2. The main features of
the normalized coincidence Ps

�AD���� /Ps
�AD��0� are that �i� it

does not depend on the integer part of � �it suffices to con-
sider 0���1�, the visibility being maximal when �=1/2;
�ii� the coincidence distributions are identical whether the
aperture angle is � or 2�−� and symmetrical around �=�;
�iii� for ��� and � fixed, the visibility diminishes as s
decreases; and �iv� the maximum visibility always occurs in
the limit s→1 �constant phase-matching function and thus
very high Schmidt number� where one has Ps→1

�AD����
=�2���cot2����−1�+ �2�−�−��+ ��−���2. Figures 2�a�
and 2�c� depict the characteristic profiles of the �normalized�
Ps

�AD� when the aperture angles of the angular diaphragms are
�=� /2 and �=� �Figs. 2�b� and 2�d� show, respectively, the
configurations of the angular diaphragms that yield the coin-
cidences Figs. 2�a� and 2�c��. Comparing Figs. 2�a� and 2�c�
one sees that the visibility of the former exhibits a much
stronger variation with s than the latter. This suggests that the
phase plate configuration of Fig. 2�b� is preferred to that of
Fig. 2�d� for achieving a more accurate estimation of the
Schmidt number via Eq. �7�. Finally, we should add that if �
is an integer number then the profiles of Ps

�AD� are constant
�independent of ��.

The second type of azimuthal �refractive� component is a
spiral phase plate �see inset in Fig. 3�a�� �19,30�. Its impulse
response function includes the phase dependence �i���

FIG. 2. �Left column� Normalized coincidence distributions as a
function of the relative orientation between the idler and signal
angular diaphragms. Solid, dashed, and dotted curves are calculated
for s=1, 0.7, and 0.4, respectively. �= �a� � /2 and �c� �, both with
�=0.5. �Right column� The corresponding configurations of the an-
gular diaphragms.
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=−�s���=��, for �i,s����i,s+2�. In this case, the joint
probability �3� can be written as Ps

�SPP����= �	�R��s�ei����
+��−2�2. At variance with Ps

�AD�, the coincidence distributions
exhibit the development of interference ripples as s decreases
and � increases �see Figs. 3�a� and 3�b��. When s→1 a para-
bolic profile is obtained, Ps→1

�SPP����=�2��2 cot2����+ ��
−��2� / sin2����. In this limit the coincidences become inde-
pendent of the integer part of �, and, as with angular dia-
phragms, the maximum coincidence visibility is attained
�when �=1/2�.

We have considered other types of azimuthal phase plates
and found the same parabolic dependence of the coinci-
dences as s→1. This is consistent with the above-mentioned
prediction that for very high transverse entanglement the
joint probability becomes independent of the radial structure
of the Schmidt modes. On the other hand, the absence of a
vanishing minimum in the coincidence distributions is a sig-
nature of a finite amount of transverse entanglement. This
effect gives rise to a contribution in the photocounts which
always exists regardless of the detector efficiencies �see Fig.
2�a� and Figs. 3�a� and 3�b��. It can, however, be diminished
for certain phase plate configurations �see Fig. 2�c�� and/or
by employing a large wG �wG�
2w0b�.

Spiral phase plates were recently used in an elegant ex-
periment aimed to show the high-dimensional spatial en-
tanglement of a two-photon state from a down-conversion
source �14�. The relevant parameters of the experiment are
�=3.5 for the phase plates, �=0.8 �m, pump width w0
=780 �m, and thickness of the nonlinear crystal L=1 mm
�14�. According to the model presented in Ref. �31�, which
corresponds to our Ps→1

�SPP�, it was concluded that K
	3700±100. Figure 4 depicts the predicted distribution for
Ps

�SPP� �dashed line� together with the measured coincidences
reported in Ref. �14�. According to our approach, a probabil-
ity distribution Ps

�SPP� fitted with s=0.66 �solid line in Fig. 4�
shows excellent agreement with the experimental results.
Equation �7� then suggests that the corresponding Schmidt
number should be much smaller than the above K. However,

we cannot perform a definite estimate for K since the value
of the fiber mode width wG at the location of the spiral phase
plates, needed to calculate �=w0 /wG appearing in Eq. �7�,
was not provided in Ref. �14�. The inset in Fig. 4 plots K for
a wide range of ratios �=w0 /wG. For instance, using our
fitting parameter s=0.66, together with w0=780 �m and as-
suming wG�250 �m, leads to ��3 and an estimate for K
�20, at least two orders of magnitude smaller than the
quoted K in Ref. �14�. A very large value for K could only be
expected if, in the experiment, the fiber mode width wG in
the plane containing the phase plates was much smaller than
the pump width w0.

VI. CONCLUSIONS

In view of the situation described above, it is reasonable
to conclude that additional experimental results and further
theoretical analyses—a recent example can be found in Ref.
�32�—are necessary and of interest in order to clarify the
problem of quantifying the amount of transverse entangle-
ment of photon pairs produced in downconversion sources. If
future values for the Schmidt number coming from accurate
and solid measurements confirm the estimate of Ref. �14�
and cannot be reproduced within our approach, one should
conclude that the conventional Gaussian profile constitutes a
poor approximation for the phase-matching function G in Eq.
�4�. However, the ability of our predicted coincidence distri-
butions to fit the experimental distributions of Ref. �14� sug-
gests the correctness of our analysis and that the value for the
Schmidt number quoted in Ref. �14� could be overestimated.
In this case, our approach would not only provide a simple
an accurate procedure to identify the relevant spatial modes,
and extract the degree of transverse entanglement, it would,
in fact, go beyond by characterizing the action of all local
bipartite azimuthal optical transformations on a broad family
of two-photon states using only two detectors. Our results

FIG. 3. Normalized coincidence distributions as a function of
the relative orientation between the idler and signal spiral phase
plates. Solid, dashed, and dotted curves are calculated for s=1, 0.7,
and 0.4, respectively. �a� �=0.5 and �b� �=4.5. �c� Configuration of
the spiral phase plates.

FIG. 4. Coincidence distribution dependence on the relative ori-
entation between idler and signal spiral phase plates �SPP with �
=3.5�. Circles are experimental values from Ref. �14�, solid and
dashed curves correspond to Ps

�SPP� fitted with s=0.66, and Ps→1
�SPP�,

respectively. The slight asymmetry in the experimental values was
probably caused by the presence of a small anomaly in the center of
the spiral phase plates �14�. �Inset� Schmidt number K as a function
of the width ratio �=w0 /wG for s=0.66.
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could also be of interest in other fields such as in identifying
the intervening spatial modes when preparing well-
controlled superpositions of photon states carrying OAM �to
be coherently transferred onto Bose-Einstein condensates
�33,34� or by entangling photons with ensembles of cold
atoms �35��, in high-resolution ghost diffraction experiments
with thermal light �36�, or in decoherence processes such as
entanglement sudden death mediated by the simultaneous ac-
tion of several weak noise sources on bipartite photon sys-
tems �37�.
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APPENDIX A

In this appendix we outline the derivation of the eigenval-
ues and eigenfunctions in the Schmidt decomposition �1�
when the two-photon amplitude � is given by Eq. �4�. We
start with some well-known facts.

For a general two-photon pure state ���, it is possible to
express ��� as a bilinear sum of idler and signal basis states
��i,s� belonging to the Hilbert space of the system

��� = 	
�i,�s

C�i,�s
��i� � ��s� , �A1�

where �i and �s label the set of quantum numbers for the idler
and signal photons, respectively, whereas the coefficients
C�i,�s

describe the probability amplitudes for each tensor
product of basis states. Our first aim is to evaluate the coef-
ficients C�i,�s

for the down-converted state ���
=�dqidqs��qi ,qs�â†�qi�â†�qs��vac�. Let u�i,s

�qi,s�
= �vac�â�qi,s���i,s� denote the basis wave functions in the
transverse momentum representation. Inserting the closure

relations 	�i,s
��i,s���i,s�= 1̂, it can be readily seen that the co-

efficients C�i,�s
are given by

C�i,�s
=� dqidqs��qi,qs�u�i

* �qi�u�s

* �qs� . �A2�

Since we are interested in elucidating the correlation
properties of the spatial degrees of freedom �OAM and the
magnitude of the transverse radial wave vectors�, we choose
as the computational basis the complete set of normalized
Laguerre-Gaussian modes �20�

u�,n�q,�� =
 w2n!

2����� + n�!�wq

2

����

Ln
����w2q2

2
�

� exp�−
w2q2

4
�exp�i�� − i

�

2
�2n + �����

� exp�i���v�,n�q�/
2� , �A3�

where q and � denote the radial and azimuthal variables in
momentum space, w is the mode width �at the beam waist�,
and Ln

����x� are the associated Laguerre polynomials. The in-
dices �=0, ±1, ±2, . . . and n=0,1 ,2 , . . . represent the wind-
ing �or topological charge� and the number of nonaxial radial
nodes of the modes.

Combining Eqs. �4�, �A2�, and �A3�, it follows that

C�i,�s

ni,ns =
w0b

�
� dqidqse

−w0
2�qi + qs�

2/4e−b2�qi − qs�
2/4

� e−i�i�ie−i�s�sv�i,ni
�qi�v�s,ns

�qs� . �A4�

By means of the well-known Anger-Jacobi identity
e−x cos��i−�s�=	m=−�

� �−1�mIm�x�eim��i−�s�, where Im�x� is the
modified Bessel function of the first kind, the two angular
integrals yield the selection rule m=�i=−�s��. This shows
that the idler and signal photons are perfectly anticorrelated
with respect to their topological charge, which is a manifes-
tation of OAM entanglement. Hence, C�i,�s

ni,ns =C�,−�
ni,ns���i

�−��s
,

where

C�,−�
ni,ns = �− 1��2w0b�

0

� �
0

�

qidqiqsdqse
−�w0

2+b2��qi
2+qs

2�/4

� v�,ni
�qi�v−�,ns

�qs�I�� �w0
2 − b2�qiqs

2
� . �A5�

The first of the radial integrals in �A5� can be performed by
resorting to the following formula

�
0

�

x���+1Ln
����x2�e−�x2

I��xy�dx

=
�� − 1�ny���

2���+1����+n+1ey2/4�Ln
���� y2

4�� − 1��� ,

valid for all real y, integers n�0 and �, and complex �
�Re���	0�.

The second radial integral can also be done analytically.
However, a dramatic simplification occurs if the widths wi
and ws of the idler and signal radial modes, which at this
stage have not been specified, are properly selected: wi=ws

=
2w0b. In this case, one obtains a second selection rule for
the radial indices; namely, ni=ns�n. That is, with such a
choice of the widths, which is unique, the idler and signal
radial modes are perfectly correlated. But this shows that it is
precisely for wi=ws=
2w0b that one derives the Schmidt
decomposition. Thus, the Schmidt width wS corresponds to
wS=
2w0b. The coefficients reduce then to

C�i,�s

ni,ns = �− 1�� 4w0b

�w0 + b�2�w0 − b

w0 + b
����+2n

���i
�−��s

�nni
�nns

.

�A6�

Let = �w0−b� / �w0+b�. It is now clear from Eq. �A6� that
the Schmidt eigenvalues are ��n= �1−2�22���+4n. We there-
fore conclude that the Schmidt decomposition of the two-
photon amplitude �4� is
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��qi,qs� = �1 − 2� 	
�=−�

�

	
n=0

�

�− 1�����+2nu�,n�qi�u−�,n�qs� ,

�A7�

where u�,n�qi�=ei��iv�,n�qi� /
2� and u−�,n�qs�
=e−i��sv−�,n�qs� /
2� represent the idler and signal Schmidt
eigenmodes. These eigenmodes belong to the Laguerre-
Gaussian basis. It is worth mentioning that, although the
Schmidt width is unique, other decompositions �actually in-
finitely many� are possible in different eigenmode bases. For
instance, the Hermite-Gaussian modes �in Cartesian vari-
ables and the same wS=
2w0b� constitute another possible
basis. In fact, all eigenmode bases connected via the unitary

�metaplectic� transformation Û�� ,��=exp�−i�L̂ ·u��, where
u�= �−sin � , cos � ,0� is a unit vector in the equatorial plane
of the so-called orbital Poincaré sphere �parametrized by the

spherical angles � and �� and L̂ is an angular momentum
operator, form Schmidt bases for �A7�. The components of

the angular momentum operator, L̂x, L̂y, and L̂z, are the three

SU�2� generators. Of these, only L̂z represents real spatial
rotations along the propagation of light, and it is thus the
only component associated with the orbital angular momen-
tum of light that can be measured in experiments �20�.

APPENDIX B

In this second appendix we explicitly show how to calcu-
late the radial functions R��s� given in Eq. �5�. For the cho-
sen two-photon amplitude �4� and the measurement scenario,
these radial functions depend on the spatial overlap of the
Schmidt and the fiber �fundamental Gaussian� modes at the
planes where the azimuthal phase plates are located. We need
to evaluate the integrals R�=	n


��n�rirsdridrsv�A=0,nA=0
�wG� �ri�

�v�B=0,nB=0
�wG� �rs�v�,n

�wS��ri�v−�,n
�wS��rs�. We use the Schmidt eigen-

values ��n= �1−2�22���+4n found in Appendix A. The idler
and signal Schmidt modes v�,n

�wS��ri� and v−�,n
�wS��rs� belong to the

Laguerre-Gaussian mode basis. We stress once again the fact
that the corresponding fiber wG and Schmidt wS widths are
not necessarily equal. This implies that the orthogonality re-
lation for these modes, �r dr v�G,nG

�wG� �r�v�S,nS

�wS� �r�=��G�S
�nGnS

,
does not hold in general when wS�wG.

We start by recalling a remarkable identity between La-
guerre polynomials Ln

��� and the modified Bessel functions I�

�38�

	
n=0

�
n!Ln

����x�Ln
����y�

����� + n + 1�
zn =

�xyz�−���/2

1 − z
exp�−

�x + y�z
1 − z

�
� I��2
xyz

1 − z
� , �B1�

valid for all real x , y, integer �, and complex z ��z��1�.
In detail, the integrals to calculate read

R� = �1 − 2����	
n=0

�

2n�
0

�

ridri
2e−ri

2/wG
2

wG
� n!

���� + n�!�1/2

� �
2ri

wS
����

Ln
����2ri

2

wS
2 �2e−ri

2/wS
2

wS
�

0

�

rsdrs
2e−rs

2/wG
2

wG

� � n!

���� + n�!�1/2�
2rs

wS
����

Ln
����2rs

2

wS
2 �2e−rs

2/wS
2

wS
. �B2�

Inserting identity �B1� in �B2� and employing the following
result �38�:

�
0

�

re−�r2
I��2�r�dr =

��1 + ���/2�e�2/2�

2��1 + �����
�
M−1/2,���/2��2

�
� ,

valid for Re���	0 and all complex �, with Ma,b representing
the Whittaker functions, we obtain

R� =

��1 +
���
2
�

��1 + ���� �8�1 − 2�3swS
2

3wG
4 �1/2

� �
0

�

dr exp�−
�2 − s2�r2

�1 − 2�swS
2�

� M−1/2,���/2� 2sr2

�1 − 2�wS
2� , �B3�

where we have introduced the parameter s=2 / �1+2+ �1
−2��wS /wG�2�. The remaining integral is carried out through
the use of the formula

�
0

�

dt
e−�̄t


t
M−1/2,���/2�t� =

��1 + ���/2�
��̄ − 1/2��1/2 + �̄����/2

� F� ���
2

,
���
2

;1 + ���;
1

1/2 + �̄
� ,

valid when �̄	1/2. The function F�a ,b ;c ;d� denotes the
hypergeometric function. Equation �B3� is finally given by

R� =
1 − 2

1 +
�1 − 2�

4
� wS

wG
−

wG

wS
�2

�2�1 + ���/2�
��1 + ����

� F� ���
2

,
���
2

;1 + ���;s2�s���. �B4�

This expression reduces to Eq. �5� when one leaves aside all
the �-independent factors �they do not play any significant
role in the normalized coincidence profiles�. In this way the
two-photon detection probabilities �3� can be cast in terms of
the impulse response functions h�A,�

�i� , h�B,−�
�s� and the radial

functions R��s� that solely depend on the parameter s �when
�A=�B=0�.
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