824 research outputs found

    Emergence of Classical Orbits in Few-Cycle Above-Threshold Ionization

    Full text link
    The time-dependent Schr\"odinger equation for atomic hydrogen in few-cycle laser pulses is solved numerically. Introducing a positive definite quantum distribution function in energy-position space, a straightforward comparison of the numerical ab initio results with classical orbit theory is facilitated. Integration over position space yields directly the photoelectron spectra so that the various pathways contributing to a certain energy in the photoelectron spectra can be established in an unprecedented direct and transparent way.Comment: 4 pages, 4 figures REVTeX (manuscript with higher resolution figures available at http://www.dieterbauer.de/publist.html

    Constrained Dynamics of Tachyon Field in FRWL Spacetime

    Get PDF
    In this paper we continue study of tachyon scalar field described by a Dirac-Born-Infeld (DBI) type action with constraints in the cosmological context. The proposed extension of the system introducing an auxiliary field in the minisuperspace framework is discussed. A new equivalent set of constraints is constructed, satisfying the usual regularity conditions.Comment: 10 pages, to be published in the Special Issue of the Facta Universitatis Series: Physics, Chemistry and Technology devoted to the SEENET-MTP Balkan Workshop BSW2019 (3-14 June 2018, Nis, Serbia

    Activity of enzymes and fitness variation

    Get PDF

    Masses of constituent quarks confined in open bottom hadrons

    Full text link
    We apply color-spin and flavor-spin quark-quark interactions to the meson and baryon constituent quarks, and calculate constituent quark masses, as well as the coupling constants of these interactions. The main goal of this paper was to determine constituent quark masses from light and open bottom hadron masses, using the fitting method we have developed and clustering of hadron groups. We use color-spin Fermi-Breit (FB) and flavor-spin Glozman-Riska (GR) hyperfine interaction (HFI) to determine constituent quark masses (especially bb quark mass). Another aim was to discern between the FB and GR HFI because our previous findings had indicated that both interactions were satisfactory. Our improved fitting procedure of constituent quark masses showed that on average color-spin (Fermi-Breit) hyperfine interaction yields better fits. The method also shows the way how the constituent quark masses and the strength of the interaction constants appear in different hadron environments.Comment: 15 pages, 6 tables, 1 figure. Accepted for publication in Mod. Phys. Lett.

    Numerical Calculation of Hubble Hierarchy Parameters and Observational Parameters of Inflation

    Full text link
    We present results obtained by a software we developed for computing observational cosmological inflation parameters: the scalar spectral index (nsn_s) and the tensor-to-scalar ratio (rr) for a standard single field and tachyon inflation, as well as for a tachyon inflation in the second Randall-Sundrum model with an additional radion field. The calculated numerical values of observational parameters are compared with the latest results of observations obtained by the Planck Collaboration. The program is written in C/C++. The \textit{GNU Scientific Library} is used for some of the numerical computations and R language is used for data analysis and plots.Comment: 8 pages, 5 figures, based on talk presented at The 10th Jubilee Conference of the Balkan Physical Union (BPU10), 26-30 August 2018 (Sofia, Bulgaria

    Inflationary RSII Model with a Matter in the Bulk and Exponential Potential of Tachyon Field

    Get PDF
    In this paper we study a tachyon cosmological model based on dynamics of a 3-brane in the second Randall-Sundrum (RSII) model extended to include matter in the bulk. The presence of matter in the bulk changes warp factor which leads to modification of inflationary dynamics. The additional brane behaves effectively as a tachyon. We calculate numerically observation parameters of inflation: the scalar spectral index (nsn_s) and the tensor-to-scalar ratio (rr) for the exponential potential of tachyon field.Comment: 9 pages, 1 figure, will be published in the Special Issue of Facta Universitatis, Series: Physics, Chemistry and Technology devoted to the SEENET-MTP Balkan Workshop BSW2018 (3-14 June 2018

    Analysis of two-dimensional high-energy photoelectron momentum distributions in single ionization of atoms by intense laser pulses

    Get PDF
    We analyzed the two-dimensional (2D) electron momentum distributions of high-energy photoelectrons of atoms in an intense laser field using the second-order strong field approximation (SFA2). The SFA2 accounts for the rescattering of the returning electron with the target ion to first order and its validity is established by comparing with results obtained by solving the time-dependent Schr\"{o}dinger equation (TDSE) for short pulses. By analyzing the SFA2 theory, we confirmed that the yield along the back rescattered ridge (BRR) in the 2D momentum spectra can be interpreted as due to the elastic scattering in the backward directions by the returning electron wave packet. The characteristics of the extracted electron wave packets for different laser parameters are analyzed, including their dependence on the laser intensity and pulse duration. For long pulses we also studied the wave packets from the first and the later returns.Comment: 12 pages, 10 figure

    PREFACE

    Get PDF

    Distinct magnetic signatures of fractional vortex configurations in multiband superconductors

    Get PDF
    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.Comment: 5 pages, 4 figure
    corecore